1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
def test01():
__cdbkernel__=create_scope()
{m,n,p}::Indices(spacetime, position=fixed);
{a,b,c,d,e,f,g,h}::Indices(spinor, position=fixed);
\sigma^{p}::ImplicitIndex(\sigma^{p a}_{b});
\psi::ImplicitIndex(\psi_{a});
\chi::ImplicitIndex(\chi^{a});
ex:= \psi \sigma^{m} \sigma^{n} \chi \lambda^{a} + 1/2 \lambda_{b} \chi^{b} T^{m n}\chi^{a};
explicit_indices(_)
tst:= \psi_{c} \sigma^{m c}_{d} \sigma^{n d}_{e} \chi^{e} \lambda^{a} + 1/2 \lambda_{b} \chi^{b} T^{m n}\chi^{a} - @(ex);
assert(tst==0)
print("Test 01a passed")
ex:= \psi \sigma^{m} \chi;
explicit_indices(_)
tst:= \psi_{a} \sigma^{m a}_{b} \chi^{b} - @(ex);
assert(tst==0)
print("Test 01b passed")
test01()
def test02():
__cdbkernel__=create_scope()
{m,n,p}::Indices(spacetime, position=fixed);
{a,b,c,d,e,f,g,h}::Indices(spinor, position=fixed);
\sigma^{p}::ImplicitIndex(\sigma^{p a}_{b});
\psi::ImplicitIndex(\psi_{a});
\chi::ImplicitIndex(\chi^{a});
\partial{#}::PartialDerivative;
ex:= \psi \sigma^{m} \sigma^{n} \partial_{n}{\chi} \lambda^{a} + \lambda_{b} \chi^{b} T^{m}\chi^{a};
explicit_indices(_)
tst:= \psi_{c} \sigma^{m c}_{d} \sigma^{n d}_{e} \partial_{n}{\chi^{e}} \lambda^{a} + \lambda_{b} \chi^{b} T^{m}\chi^{a} - @(ex);
assert(tst==0)
print("Test 02 passed")
test02()
def test03():
__cdbkernel__=create_scope()
{m,n,p}::Indices(spacetime, position=fixed);
{a,b,c,d,e,f,g,h}::Indices(spinor, position=fixed);
\sigma^{p}::ImplicitIndex(\sigma^{p a}_{b});
\psi::ImplicitIndex(\psi_{a});
\chi::ImplicitIndex(\chi^{a});
ex:= 2 \sigma^{m} \chi \psi \sigma^{n} \chi;
explicit_indices(_)
tst:= 2 \sigma^{m a}_{b} \chi^{b} \psi_{c} \sigma^{n c}_{d} \chi^{d} - @(ex);
assert(tst==0)
print("Test 03 passed")
test03()
def test04():
__cdbkernel__=create_scope()
{m,n,p}::Indices(spacetime, position=fixed);
{a,b,c,d,e,f,g,h}::Indices(spinor, position=fixed);
\sigma^{p}::ImplicitIndex(\sigma^{p}_{a b});
\tau^{p}::ImplicitIndex(\tau^{p a b});
Tr{#}::Trace(indices=spinor);
ex:= Tr( \sigma^{m} \tau^{n} );
explicit_indices(_)
tst:= \sigma^{m}_{a b} \tau^{n b a} - @(ex);
assert(tst==0)
print("Test 04 passed")
test04()
def test05():
__cdbkernel__=create_scope()
{m,n,p}::Indices(spacetime, position=fixed);
{a,b,c,d,e,f,g,h}::Indices(spinor, position=fixed);
\sigma^{p}::ImplicitIndex(\sigma^{p}_{a b});
\tau^{p}::ImplicitIndex(\tau^{p a b});
Tr{#}::Trace(indices=spinor);
ex:= 1/3 Tr( \sigma^{m} \tau^{n} + \tau^{n} \sigma^{m} );
explicit_indices(_)
tst:= 1/3 \sigma^{m}_{a b} \tau^{n b a} + 1/3 \tau^{n a b} \sigma^{m}_{b a} - @(ex);
assert(tst==0)
print("Test 05 passed")
test05()
# A more complicated example for the pattern matcher,
# matching indices to index values, both symbolically
# and numerically.
def test06():
__cdbkernel__=create_scope()
{r,t}::Coordinate;
{\mu,\nu}::Indices(spacetime, values={r,t});
{a,b,c,d}::Indices(group, values={0,1});
\partial{#}::PartialDerivative;
ex:= \partial_{\mu}(A_{a b}) \partial_{\mu}(A_{b a});
A_{a b}::Depends(r,t);
{q1,q2}::Depends(r,t);
rl:= { A_{0 0} = q1, A_{1 1} = q2 };
evaluate(ex, rl, simplify=False)
tst:= \partial_{t}{q1} \partial_{t}{q1}
+\partial_{r}{q1} \partial_{r}{q1}
+\partial_{t}{q2} \partial_{t}{q2}
+\partial_{r}{q2} \partial_{r}{q2}
- @(ex);
assert(tst==0)
print("Test 06 passed")
test06()
def test07():
__cdbkernel__=create_scope()
{r,t,v,w}::Coordinate;
{\mu,\nu}::Indices(spacetime, values={r,t});
{a,b,c,d}::Indices(group, values={v,w});
\partial{#}::PartialDerivative;
ex:= \partial_{\mu}(A_{a b}) \partial_{\mu}(A_{b a});
A_{a b}::Depends(r,t);
evaluate(ex, simplify=False)
tst:=\partial_{t}(A_{w w}) \partial_{t}(A_{w w}) + \partial_{r}(A_{w w}) \partial_{r}(A_{w w}) + \partial_{t}(A_{v w}) \partial_{t}(A_{w v}) + \partial_{r}(A_{v w}) \partial_{r}(A_{w v}) + \partial_{t}(A_{w v}) \partial_{t}(A_{v w}) + \partial_{r}(A_{w v}) \partial_{r}(A_{v w}) + \partial_{t}(A_{v v}) \partial_{t}(A_{v v}) + \partial_{r}(A_{v v}) \partial_{r}(A_{v v}) - @(ex);
assert(tst==0)
print("Test 07 passed")
test07()
def test08():
__cdbkernel__=create_scope()
{a,b,c,d}::Indices(vector).
tr{#}::Trace(indices=vector).
A::ImplicitIndex(A_{a b}).
B::ImplicitIndex(B_{a b}).
C::ImplicitIndex(C_{a b}).
D::ImplicitIndex(D_{a b}).
ex:=tr(c A B) tr(C D);
explicit_indices(_);
tst:= c A_{a b} B_{b a} C_{c d} D_{d c} - @(ex);
print("Test 08 passed")
test08()
# The original question:
# Tr{#}::Trace;
# {\mu,\nu}::Indices(spacetime, values={0,1,2,3});
# #, position=fixed);
# {r,t}::Coordinate;
# {a,b,c,d}::Indices(group, values={r,t});
# A::ImplicitIndex(A_{a b});
# \partial{#}::PartialDerivative;
# A::Depends(\partial{#});
# ex:= Tr( \partial_{\mu}{A} \partial^{\mu}{A} );
# explicit_indices(_);
# A_{a b}::Depends(r,t);
# #\partial{#});
# #{q1, q2}::Depends(\partial{#});
# # \mu
# rl:= { A_{r r} = q1, A_{t t} = q2 };
# evaluate(ex, simplify=False);
# evaluate(ex, rl, simplify=False);
# tst:= \partial_{\mu}{q1} \partial^{\mu}{q1} + \partial_{\mu}{q2} \partial^{\mu}{q2} - @(ex);
# assert(tst==0)
# print("Test 06 passed")
#ex:= \chi \psi \sigma^{n} \chi;
#explicit_indices(_);
# Normally index contraction aims for adjacent indices.
# With 'eager=True', contractions are generated as much
# as possible, even if that does not lead to adjacent indices.
#
# {m,n,p}::Indices(spacetime, position=fixed);
# {a,b,c,d,e,f,g,h}::Indices(spinor, position=fixed);
# \sigma^{p}::ImplicitIndex(\sigma^{p}_{a b});
# \tau^{p}::ImplicitIndex(\tau^{p a b});
# \theta::ImplicitIndex(\theta^{a});
#
# ex := \sigma^{p} \theta \tau^{m};
# tst:= \sigma^{p}_{a b} \theta^{b} \tau^{m a c};
#
# The `combine` algorithm puts objects in the
# wrong order!
{A^{a \alpha}, B^{b}_{\alpha}}::NonCommuting;
A^{a}::ImplicitIndex(A^{a \alpha});
B^{b}::ImplicitIndex(B^{b}_{\alpha});
ex:=(A^a)^\alpha (B^b)_{\alpha};
print(tree(ex))
combine(ex);
|