1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
|
// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cel
import (
"fmt"
"strings"
"github.com/google/cel-go/checker/decls"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
"github.com/google/cel-go/interpreter/functions"
exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
)
// Kind indicates a CEL type's kind which is used to differentiate quickly between simple and complex types.
type Kind uint
const (
// DynKind represents a dynamic type. This kind only exists at type-check time.
DynKind Kind = iota
// AnyKind represents a google.protobuf.Any type. This kind only exists at type-check time.
AnyKind
// BoolKind represents a boolean type.
BoolKind
// BytesKind represents a bytes type.
BytesKind
// DoubleKind represents a double type.
DoubleKind
// DurationKind represents a CEL duration type.
DurationKind
// IntKind represents an integer type.
IntKind
// ListKind represents a list type.
ListKind
// MapKind represents a map type.
MapKind
// NullTypeKind represents a null type.
NullTypeKind
// OpaqueKind represents an abstract type which has no accessible fields.
OpaqueKind
// StringKind represents a string type.
StringKind
// StructKind represents a structured object with typed fields.
StructKind
// TimestampKind represents a a CEL time type.
TimestampKind
// TypeKind represents the CEL type.
TypeKind
// TypeParamKind represents a parameterized type whose type name will be resolved at type-check time, if possible.
TypeParamKind
// UintKind represents a uint type.
UintKind
)
var (
// AnyType represents the google.protobuf.Any type.
AnyType = &Type{
kind: AnyKind,
runtimeType: types.NewTypeValue("google.protobuf.Any"),
}
// BoolType represents the bool type.
BoolType = &Type{
kind: BoolKind,
runtimeType: types.BoolType,
}
// BytesType represents the bytes type.
BytesType = &Type{
kind: BytesKind,
runtimeType: types.BytesType,
}
// DoubleType represents the double type.
DoubleType = &Type{
kind: DoubleKind,
runtimeType: types.DoubleType,
}
// DurationType represents the CEL duration type.
DurationType = &Type{
kind: DurationKind,
runtimeType: types.DurationType,
}
// DynType represents a dynamic CEL type whose type will be determined at runtime from context.
DynType = &Type{
kind: DynKind,
runtimeType: types.NewTypeValue("dyn"),
}
// IntType represents the int type.
IntType = &Type{
kind: IntKind,
runtimeType: types.IntType,
}
// NullType represents the type of a null value.
NullType = &Type{
kind: NullTypeKind,
runtimeType: types.NullType,
}
// StringType represents the string type.
StringType = &Type{
kind: StringKind,
runtimeType: types.StringType,
}
// TimestampType represents the time type.
TimestampType = &Type{
kind: TimestampKind,
runtimeType: types.TimestampType,
}
// TypeType represents a CEL type
TypeType = &Type{
kind: TypeKind,
runtimeType: types.TypeType,
}
//UintType represents a uint type.
UintType = &Type{
kind: UintKind,
runtimeType: types.UintType,
}
)
// Type holds a reference to a runtime type with an optional type-checked set of type parameters.
type Type struct {
// kind indicates general category of the type.
kind Kind
// runtimeType is the runtime type of the declaration.
runtimeType ref.Type
// parameters holds the optional type-checked set of type parameters that are used during static analysis.
parameters []*Type
// isAssignableType function determines whether one type is assignable to this type.
// A nil value for the isAssignableType function falls back to equality of kind, runtimeType, and parameters.
isAssignableType func(other *Type) bool
// isAssignableRuntimeType function determines whether the runtime type (with erasure) is assignable to this type.
// A nil value for the isAssignableRuntimeType function falls back to the equality of the type or type name.
isAssignableRuntimeType func(other ref.Val) bool
}
// IsAssignableType determines whether the current type is type-check assignable from the input fromType.
func (t *Type) IsAssignableType(fromType *Type) bool {
if t.isAssignableType != nil {
return t.isAssignableType(fromType)
}
return t.defaultIsAssignableType(fromType)
}
// IsAssignableRuntimeType determines whether the current type is runtime assignable from the input runtimeType.
//
// At runtime, parameterized types are erased and so a function which type-checks to support a map(string, string)
// will have a runtime assignable type of a map.
func (t *Type) IsAssignableRuntimeType(val ref.Val) bool {
if t.isAssignableRuntimeType != nil {
return t.isAssignableRuntimeType(val)
}
return t.defaultIsAssignableRuntimeType(val)
}
// String returns a human-readable definition of the type name.
func (t *Type) String() string {
if len(t.parameters) == 0 {
return t.runtimeType.TypeName()
}
params := make([]string, len(t.parameters))
for i, p := range t.parameters {
params[i] = p.String()
}
return fmt.Sprintf("%s(%s)", t.runtimeType.TypeName(), strings.Join(params, ", "))
}
// isDyn indicates whether the type is dynamic in any way.
func (t *Type) isDyn() bool {
return t.kind == DynKind || t.kind == AnyKind || t.kind == TypeParamKind
}
// equals indicates whether two types have the same kind, type name, and parameters.
func (t *Type) equals(other *Type) bool {
if t.kind != other.kind ||
t.runtimeType.TypeName() != other.runtimeType.TypeName() ||
len(t.parameters) != len(other.parameters) {
return false
}
for i, p := range t.parameters {
if !p.equals(other.parameters[i]) {
return false
}
}
return true
}
// defaultIsAssignableType provides the standard definition of what it means for one type to be assignable to another
// where any of the following may return a true result:
// - The from types are the same instance
// - The target type is dynamic
// - The fromType has the same kind and type name as the target type, and all parameters of the target type
// are IsAssignableType() from the parameters of the fromType.
func (t *Type) defaultIsAssignableType(fromType *Type) bool {
if t == fromType || t.isDyn() {
return true
}
if t.kind != fromType.kind ||
t.runtimeType.TypeName() != fromType.runtimeType.TypeName() ||
len(t.parameters) != len(fromType.parameters) {
return false
}
for i, tp := range t.parameters {
fp := fromType.parameters[i]
if !tp.IsAssignableType(fp) {
return false
}
}
return true
}
// defaultIsAssignableRuntimeType inspects the type and in the case of list and map elements, the key and element types
// to determine whether a ref.Val is assignable to the declared type for a function signature.
func (t *Type) defaultIsAssignableRuntimeType(val ref.Val) bool {
valType := val.Type()
if !(t.runtimeType == valType || t.isDyn() || t.runtimeType.TypeName() == valType.TypeName()) {
return false
}
switch t.runtimeType {
case types.ListType:
elemType := t.parameters[0]
l := val.(traits.Lister)
if l.Size() == types.IntZero {
return true
}
it := l.Iterator()
for it.HasNext() == types.True {
elemVal := it.Next()
return elemType.IsAssignableRuntimeType(elemVal)
}
case types.MapType:
keyType := t.parameters[0]
elemType := t.parameters[1]
m := val.(traits.Mapper)
if m.Size() == types.IntZero {
return true
}
it := m.Iterator()
for it.HasNext() == types.True {
keyVal := it.Next()
elemVal := m.Get(keyVal)
return keyType.IsAssignableRuntimeType(keyVal) && elemType.IsAssignableRuntimeType(elemVal)
}
}
return true
}
// ListType creates an instances of a list type value with the provided element type.
func ListType(elemType *Type) *Type {
return &Type{
kind: ListKind,
runtimeType: types.ListType,
parameters: []*Type{elemType},
}
}
// MapType creates an instance of a map type value with the provided key and value types.
func MapType(keyType, valueType *Type) *Type {
return &Type{
kind: MapKind,
runtimeType: types.MapType,
parameters: []*Type{keyType, valueType},
}
}
// NullableType creates an instance of a nullable type with the provided wrapped type.
//
// Note: only primitive types are supported as wrapped types.
func NullableType(wrapped *Type) *Type {
return &Type{
kind: wrapped.kind,
runtimeType: wrapped.runtimeType,
parameters: wrapped.parameters,
isAssignableType: func(other *Type) bool {
return NullType.IsAssignableType(other) || wrapped.IsAssignableType(other)
},
isAssignableRuntimeType: func(other ref.Val) bool {
return NullType.IsAssignableRuntimeType(other) || wrapped.IsAssignableRuntimeType(other)
},
}
}
// OpaqueType creates an abstract parameterized type with a given name.
func OpaqueType(name string, params ...*Type) *Type {
return &Type{
kind: OpaqueKind,
runtimeType: types.NewTypeValue(name),
parameters: params,
}
}
// ObjectType creates a type references to an externally defined type, e.g. a protobuf message type.
func ObjectType(typeName string) *Type {
return &Type{
kind: StructKind,
runtimeType: types.NewObjectTypeValue(typeName),
}
}
// TypeParamType creates a parameterized type instance.
func TypeParamType(paramName string) *Type {
return &Type{
kind: TypeParamKind,
runtimeType: types.NewTypeValue(paramName),
}
}
// Variable creates an instance of a variable declaration with a variable name and type.
func Variable(name string, t *Type) EnvOption {
return func(e *Env) (*Env, error) {
et, err := TypeToExprType(t)
if err != nil {
return nil, err
}
e.declarations = append(e.declarations, decls.NewVar(name, et))
return e, nil
}
}
// Function defines a function and overloads with optional singleton or per-overload bindings.
//
// Using Function is roughly equivalent to calling Declarations() to declare the function signatures
// and Functions() to define the function bindings, if they have been defined. Specifying the
// same function name more than once will result in the aggregation of the function overloads. If any
// signatures conflict between the existing and new function definition an error will be raised.
// However, if the signatures are identical and the overload ids are the same, the redefinition will
// be considered a no-op.
//
// One key difference with using Function() is that each FunctionDecl provided will handle dynamic
// dispatch based on the type-signatures of the overloads provided which means overload resolution at
// runtime is handled out of the box rather than via a custom binding for overload resolution via
// Functions():
//
// - Overloads are searched in the order they are declared
// - Dynamic dispatch for lists and maps is limited by inspection of the list and map contents
// at runtime. Empty lists and maps will result in a 'default dispatch'
// - In the event that a default dispatch occurs, the first overload provided is the one invoked
//
// If you intend to use overloads which differentiate based on the key or element type of a list or
// map, consider using a generic function instead: e.g. func(list(T)) or func(map(K, V)) as this
// will allow your implementation to determine how best to handle dispatch and the default behavior
// for empty lists and maps whose contents cannot be inspected.
//
// For functions which use parameterized opaque types (abstract types), consider using a singleton
// function which is capable of inspecting the contents of the type and resolving the appropriate
// overload as CEL can only make inferences by type-name regarding such types.
func Function(name string, opts ...FunctionOpt) EnvOption {
return func(e *Env) (*Env, error) {
fn := &functionDecl{
name: name,
overloads: []*overloadDecl{},
options: opts,
}
err := fn.init()
if err != nil {
return nil, err
}
_, err = functionDeclToExprDecl(fn)
if err != nil {
return nil, err
}
if existing, found := e.functions[fn.name]; found {
fn, err = existing.merge(fn)
if err != nil {
return nil, err
}
}
e.functions[name] = fn
return e, nil
}
}
// FunctionOpt defines a functional option for configuring a function declaration.
type FunctionOpt func(*functionDecl) (*functionDecl, error)
// SingletonUnaryBinding creates a singleton function defintion to be used for all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
func SingletonUnaryBinding(fn functions.UnaryOp, traits ...int) FunctionOpt {
trait := 0
for _, t := range traits {
trait = trait | t
}
return func(f *functionDecl) (*functionDecl, error) {
if f.singleton != nil {
return nil, fmt.Errorf("function already has a singleton binding: %s", f.name)
}
f.singleton = &functions.Overload{
Operator: f.name,
Unary: fn,
OperandTrait: trait,
}
return f, nil
}
}
// SingletonBinaryImpl creates a singleton function definition to be used with all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
func SingletonBinaryImpl(fn functions.BinaryOp, traits ...int) FunctionOpt {
trait := 0
for _, t := range traits {
trait = trait | t
}
return func(f *functionDecl) (*functionDecl, error) {
if f.singleton != nil {
return nil, fmt.Errorf("function already has a singleton binding: %s", f.name)
}
f.singleton = &functions.Overload{
Operator: f.name,
Binary: fn,
OperandTrait: trait,
}
return f, nil
}
}
// SingletonFunctionImpl creates a singleton function definition to be used with all function overloads.
//
// Note, this approach works well if operand is expected to have a specific trait which it implements,
// e.g. traits.ContainerType. Otherwise, prefer per-overload function bindings.
func SingletonFunctionImpl(fn functions.FunctionOp, traits ...int) FunctionOpt {
trait := 0
for _, t := range traits {
trait = trait | t
}
return func(f *functionDecl) (*functionDecl, error) {
if f.singleton != nil {
return nil, fmt.Errorf("function already has a singleton binding: %s", f.name)
}
f.singleton = &functions.Overload{
Operator: f.name,
Function: fn,
OperandTrait: trait,
}
return f, nil
}
}
// Overload defines a new global overload with an overload id, argument types, and result type. Through the
// use of OverloadOpt options, the overload may also be configured with a binding, an operand trait, and to
// be non-strict.
//
// Note: function bindings should be commonly configured with Overload instances whereas operand traits and
// strict-ness should be rare occurrences.
func Overload(overloadID string, args []*Type, resultType *Type, opts ...OverloadOpt) FunctionOpt {
return newOverload(overloadID, false, args, resultType, opts...)
}
// MemberOverload defines a new receiver-style overload (or member function) with an overload id, argument types,
// and result type. Through the use of OverloadOpt options, the overload may also be configured with a binding,
// an operand trait, and to be non-strict.
//
// Note: function bindings should be commonly configured with Overload instances whereas operand traits and
// strict-ness should be rare occurrences.
func MemberOverload(overloadID string, args []*Type, resultType *Type, opts ...OverloadOpt) FunctionOpt {
return newOverload(overloadID, true, args, resultType, opts...)
}
// OverloadOpt is a functional option for configuring a function overload.
type OverloadOpt func(*overloadDecl) (*overloadDecl, error)
// UnaryBinding provides the implementation of a unary overload. The provided function is protected by a runtime
// type-guard which ensures runtime type agreement between the overload signature and runtime argument types.
func UnaryBinding(binding functions.UnaryOp) OverloadOpt {
return func(o *overloadDecl) (*overloadDecl, error) {
if o.hasBinding() {
return nil, fmt.Errorf("overload already has a binding: %s", o.id)
}
if len(o.argTypes) != 1 {
return nil, fmt.Errorf("unary function bound to non-unary overload: %s", o.id)
}
o.unaryOp = binding
return o, nil
}
}
// BinaryBinding provides the implementation of a binary overload. The provided function is protected by a runtime
// type-guard which ensures runtime type agreement between the overload signature and runtime argument types.
func BinaryBinding(binding functions.BinaryOp) OverloadOpt {
return func(o *overloadDecl) (*overloadDecl, error) {
if o.hasBinding() {
return nil, fmt.Errorf("overload already has a binding: %s", o.id)
}
if len(o.argTypes) != 2 {
return nil, fmt.Errorf("binary function bound to non-binary overload: %s", o.id)
}
o.binaryOp = binding
return o, nil
}
}
// FunctionBinding provides the implementation of a variadic overload. The provided function is protected by a runtime
// type-guard which ensures runtime type agreement between the overload signature and runtime argument types.
func FunctionBinding(binding functions.FunctionOp) OverloadOpt {
return func(o *overloadDecl) (*overloadDecl, error) {
if o.hasBinding() {
return nil, fmt.Errorf("overload already has a binding: %s", o.id)
}
o.functionOp = binding
return o, nil
}
}
// OverloadIsNonStrict enables the function to be called with error and unknown argument values.
//
// Note: do not use this option unless absoluately necessary as it should be an uncommon feature.
func OverloadIsNonStrict() OverloadOpt {
return func(o *overloadDecl) (*overloadDecl, error) {
o.nonStrict = true
return o, nil
}
}
// OverloadOperandTrait configures a set of traits which the first argument to the overload must implement in order to be
// successfully invoked.
func OverloadOperandTrait(trait int) OverloadOpt {
return func(o *overloadDecl) (*overloadDecl, error) {
o.operandTrait = trait
return o, nil
}
}
type functionDecl struct {
name string
overloads []*overloadDecl
options []FunctionOpt
singleton *functions.Overload
initialized bool
}
// init ensures that a function's options have been applied.
//
// This function is used in both the environment configuration and internally for function merges.
func (f *functionDecl) init() error {
if f.initialized {
return nil
}
f.initialized = true
var err error
for _, opt := range f.options {
f, err = opt(f)
if err != nil {
return err
}
}
if len(f.overloads) == 0 {
return fmt.Errorf("function %s must have at least one overload", f.name)
}
return nil
}
// bindings produces a set of function bindings, if any are defined.
func (f *functionDecl) bindings() ([]*functions.Overload, error) {
overloads := []*functions.Overload{}
nonStrict := false
for _, o := range f.overloads {
if o.hasBinding() {
overload := &functions.Overload{
Operator: o.id,
Unary: o.guardedUnaryOp(f.name),
Binary: o.guardedBinaryOp(f.name),
Function: o.guardedFunctionOp(f.name),
OperandTrait: o.operandTrait,
NonStrict: o.nonStrict,
}
overloads = append(overloads, overload)
nonStrict = nonStrict || o.nonStrict
}
}
if f.singleton != nil {
if len(overloads) != 0 {
return nil, fmt.Errorf("singleton function incompatible with specialized overloads: %s", f.name)
}
return []*functions.Overload{
{
Operator: f.name,
Unary: f.singleton.Unary,
Binary: f.singleton.Binary,
Function: f.singleton.Function,
OperandTrait: f.singleton.OperandTrait,
},
}, nil
}
if len(overloads) == 0 {
return overloads, nil
}
// Single overload. Replicate an entry for it using the function name as well.
if len(overloads) == 1 {
if overloads[0].Operator == f.name {
return overloads, nil
}
return append(overloads, &functions.Overload{
Operator: f.name,
Unary: overloads[0].Unary,
Binary: overloads[0].Binary,
Function: overloads[0].Function,
NonStrict: overloads[0].NonStrict,
OperandTrait: overloads[0].OperandTrait,
}), nil
}
// All of the defined overloads are wrapped into a top-level function which
// performs dynamic dispatch to the proper overload based on the argument types.
bindings := append([]*functions.Overload{}, overloads...)
funcDispatch := func(args ...ref.Val) ref.Val {
for _, o := range f.overloads {
if !o.matchesRuntimeSignature(args...) {
continue
}
switch len(args) {
case 1:
if o.unaryOp != nil {
return o.unaryOp(args[0])
}
case 2:
if o.binaryOp != nil {
return o.binaryOp(args[0], args[1])
}
}
if o.functionOp != nil {
return o.functionOp(args...)
}
// eventually this will fall through to the noSuchOverload below.
}
return noSuchOverload(f.name, args...)
}
function := &functions.Overload{
Operator: f.name,
Function: funcDispatch,
NonStrict: nonStrict,
}
return append(bindings, function), nil
}
// merge one function declaration with another.
//
// If a function is extended, by say adding new overloads to an existing function, then it is merged with the
// prior definition of the function at which point its overloads must not collide with pre-existing overloads
// and its bindings (singleton, or per-overload) must not conflict with previous definitions either.
func (f *functionDecl) merge(other *functionDecl) (*functionDecl, error) {
if f.name != other.name {
return nil, fmt.Errorf("cannot merge unrelated functions. %s and %s", f.name, other.name)
}
err := f.init()
if err != nil {
return nil, err
}
err = other.init()
if err != nil {
return nil, err
}
merged := &functionDecl{
name: f.name,
overloads: make([]*overloadDecl, len(f.overloads)),
options: []FunctionOpt{},
initialized: true,
singleton: f.singleton,
}
copy(merged.overloads, f.overloads)
for _, o := range other.overloads {
err := merged.addOverload(o)
if err != nil {
return nil, fmt.Errorf("function declaration merge failed: %v", err)
}
}
if other.singleton != nil {
if merged.singleton != nil {
return nil, fmt.Errorf("function already has a binding: %s", f.name)
}
merged.singleton = other.singleton
}
return merged, nil
}
// addOverload ensures that the new overload does not collide with an existing overload signature;
// however, if the function signatures are identical, the implementation may be rewritten as its
// difficult to compare functions by object identity.
func (f *functionDecl) addOverload(overload *overloadDecl) error {
for index, o := range f.overloads {
if o.id != overload.id && o.signatureOverlaps(overload) {
return fmt.Errorf("overload signature collision in function %s: %s collides with %s", f.name, o.id, overload.id)
}
if o.id == overload.id {
if o.signatureEquals(overload) && o.nonStrict == overload.nonStrict {
// Allow redefinition of an overload implementation so long as the signatures match.
f.overloads[index] = overload
return nil
} else {
return fmt.Errorf("overload redefinition in function. %s: %s has multiple definitions", f.name, o.id)
}
}
}
f.overloads = append(f.overloads, overload)
return nil
}
func noSuchOverload(funcName string, args ...ref.Val) ref.Val {
argTypes := make([]string, len(args))
for i, arg := range args {
argTypes[i] = arg.Type().TypeName()
}
signature := strings.Join(argTypes, ", ")
return types.NewErr("no such overload: %s(%s)", funcName, signature)
}
// overloadDecl contains all of the relevant information regarding a specific function overload.
type overloadDecl struct {
id string
argTypes []*Type
resultType *Type
memberFunction bool
// binding options, optional but encouraged.
unaryOp functions.UnaryOp
binaryOp functions.BinaryOp
functionOp functions.FunctionOp
// behavioral options, uncommon
nonStrict bool
operandTrait int
}
func (o *overloadDecl) hasBinding() bool {
return o.unaryOp != nil || o.binaryOp != nil || o.functionOp != nil
}
// guardedUnaryOp creates an invocation guard around the provided unary operator, if one is defined.
func (o *overloadDecl) guardedUnaryOp(funcName string) functions.UnaryOp {
if o.unaryOp == nil {
return nil
}
return func(arg ref.Val) ref.Val {
if !o.matchesRuntimeUnarySignature(arg) {
return noSuchOverload(funcName, arg)
}
return o.unaryOp(arg)
}
}
// guardedBinaryOp creates an invocation guard around the provided binary operator, if one is defined.
func (o *overloadDecl) guardedBinaryOp(funcName string) functions.BinaryOp {
if o.binaryOp == nil {
return nil
}
return func(arg1, arg2 ref.Val) ref.Val {
if !o.matchesRuntimeBinarySignature(arg1, arg2) {
return noSuchOverload(funcName, arg1, arg2)
}
return o.binaryOp(arg1, arg2)
}
}
// guardedFunctionOp creates an invocation guard around the provided variadic function binding, if one is provided.
func (o *overloadDecl) guardedFunctionOp(funcName string) functions.FunctionOp {
if o.functionOp == nil {
return nil
}
return func(args ...ref.Val) ref.Val {
if !o.matchesRuntimeSignature(args...) {
return noSuchOverload(funcName, args...)
}
return o.functionOp(args...)
}
}
// matchesRuntimeUnarySignature indicates whether the argument type is runtime assiganble to the overload's expected argument.
func (o *overloadDecl) matchesRuntimeUnarySignature(arg ref.Val) bool {
if o.nonStrict && types.IsUnknownOrError(arg) {
return true
}
return o.argTypes[0].IsAssignableRuntimeType(arg) && (o.operandTrait == 0 || arg.Type().HasTrait(o.operandTrait))
}
// matchesRuntimeBinarySignature indicates whether the argument types are runtime assiganble to the overload's expected arguments.
func (o *overloadDecl) matchesRuntimeBinarySignature(arg1, arg2 ref.Val) bool {
if o.nonStrict {
if types.IsUnknownOrError(arg1) {
return types.IsUnknownOrError(arg2) || o.argTypes[1].IsAssignableRuntimeType(arg2)
}
} else if !o.argTypes[1].IsAssignableRuntimeType(arg2) {
return false
}
return o.argTypes[0].IsAssignableRuntimeType(arg1) && (o.operandTrait == 0 || arg1.Type().HasTrait(o.operandTrait))
}
// matchesRuntimeSignature indicates whether the argument types are runtime assiganble to the overload's expected arguments.
func (o *overloadDecl) matchesRuntimeSignature(args ...ref.Val) bool {
if len(args) != len(o.argTypes) {
return false
}
if len(args) == 0 {
return true
}
allArgsMatch := true
for i, arg := range args {
if o.nonStrict && types.IsUnknownOrError(arg) {
continue
}
allArgsMatch = allArgsMatch && o.argTypes[i].IsAssignableRuntimeType(arg)
}
arg := args[0]
return allArgsMatch && (o.operandTrait == 0 || (o.nonStrict && types.IsUnknownOrError(arg)) || arg.Type().HasTrait(o.operandTrait))
}
// signatureEquals indicates whether one overload has an identical signature to another overload.
//
// Providing a duplicate signature is not an issue, but an overloapping signature is problematic.
func (o *overloadDecl) signatureEquals(other *overloadDecl) bool {
if o.id != other.id || o.memberFunction != other.memberFunction || len(o.argTypes) != len(other.argTypes) {
return false
}
for i, at := range o.argTypes {
oat := other.argTypes[i]
if !at.equals(oat) {
return false
}
}
return o.resultType.equals(other.resultType)
}
// signatureOverlaps indicates whether one overload has an overlapping signature with another overload.
//
// The 'other' overload must first be checked for equality before determining whether it overlaps in order to be completely accurate.
func (o *overloadDecl) signatureOverlaps(other *overloadDecl) bool {
if o.memberFunction != other.memberFunction || len(o.argTypes) != len(other.argTypes) {
return false
}
argsOverlap := true
for i, argType := range o.argTypes {
otherArgType := other.argTypes[i]
argsOverlap = argsOverlap &&
(argType.IsAssignableType(otherArgType) ||
otherArgType.IsAssignableType(argType))
}
return argsOverlap
}
func newOverload(overloadID string, memberFunction bool, args []*Type, resultType *Type, opts ...OverloadOpt) FunctionOpt {
return func(f *functionDecl) (*functionDecl, error) {
overload := &overloadDecl{
id: overloadID,
argTypes: args,
resultType: resultType,
memberFunction: memberFunction,
}
var err error
for _, opt := range opts {
overload, err = opt(overload)
if err != nil {
return nil, err
}
}
err = f.addOverload(overload)
if err != nil {
return nil, err
}
return f, nil
}
}
func maybeWrapper(t *Type, pbType *exprpb.Type) *exprpb.Type {
if t.IsAssignableType(NullType) {
return decls.NewWrapperType(pbType)
}
return pbType
}
// TypeToExprType converts a CEL-native type representation to a protobuf CEL Type representation.
func TypeToExprType(t *Type) (*exprpb.Type, error) {
switch t.kind {
case AnyKind:
return decls.Any, nil
case BoolKind:
return maybeWrapper(t, decls.Bool), nil
case BytesKind:
return maybeWrapper(t, decls.Bytes), nil
case DoubleKind:
return maybeWrapper(t, decls.Double), nil
case DurationKind:
return decls.Duration, nil
case DynKind:
return decls.Dyn, nil
case IntKind:
return maybeWrapper(t, decls.Int), nil
case ListKind:
et, err := TypeToExprType(t.parameters[0])
if err != nil {
return nil, err
}
return decls.NewListType(et), nil
case MapKind:
kt, err := TypeToExprType(t.parameters[0])
if err != nil {
return nil, err
}
vt, err := TypeToExprType(t.parameters[1])
if err != nil {
return nil, err
}
return decls.NewMapType(kt, vt), nil
case NullTypeKind:
return decls.Null, nil
case OpaqueKind:
params := make([]*exprpb.Type, len(t.parameters))
for i, p := range t.parameters {
pt, err := TypeToExprType(p)
if err != nil {
return nil, err
}
params[i] = pt
}
return decls.NewAbstractType(t.runtimeType.TypeName(), params...), nil
case StringKind:
return maybeWrapper(t, decls.String), nil
case StructKind:
switch t.runtimeType.TypeName() {
case "google.protobuf.Any":
return decls.Any, nil
case "google.protobuf.Duration":
return decls.Duration, nil
case "google.protobuf.Timestamp":
return decls.Timestamp, nil
case "google.protobuf.Value":
return decls.Dyn, nil
case "google.protobuf.ListValue":
return decls.NewListType(decls.Dyn), nil
case "google.protobuf.Struct":
return decls.NewMapType(decls.String, decls.Dyn), nil
case "google.protobuf.BoolValue":
return decls.NewWrapperType(decls.Bool), nil
case "google.protobuf.BytesValue":
return decls.NewWrapperType(decls.Bytes), nil
case "google.protobuf.DoubleValue", "google.protobuf.FloatValue":
return decls.NewWrapperType(decls.Double), nil
case "google.protobuf.Int32Value", "google.protobuf.Int64Value":
return decls.NewWrapperType(decls.Int), nil
case "google.protobuf.StringValue":
return decls.NewWrapperType(decls.String), nil
case "google.protobuf.UInt32Value", "google.protobuf.UInt64Value":
return decls.NewWrapperType(decls.Uint), nil
default:
return decls.NewObjectType(t.runtimeType.TypeName()), nil
}
case TimestampKind:
return decls.Timestamp, nil
case TypeParamKind:
return decls.NewTypeParamType(t.runtimeType.TypeName()), nil
case TypeKind:
return decls.NewTypeType(decls.Dyn), nil
case UintKind:
return maybeWrapper(t, decls.Uint), nil
}
return nil, fmt.Errorf("missing type conversion to proto: %v", t)
}
// ExprTypeToType converts a protobuf CEL type representation to a CEL-native type representation.
func ExprTypeToType(t *exprpb.Type) (*Type, error) {
switch t.GetTypeKind().(type) {
case *exprpb.Type_Dyn:
return DynType, nil
case *exprpb.Type_AbstractType_:
paramTypes := make([]*Type, len(t.GetAbstractType().GetParameterTypes()))
for i, p := range t.GetAbstractType().GetParameterTypes() {
pt, err := ExprTypeToType(p)
if err != nil {
return nil, err
}
paramTypes[i] = pt
}
return OpaqueType(t.GetAbstractType().GetName(), paramTypes...), nil
case *exprpb.Type_ListType_:
et, err := ExprTypeToType(t.GetListType().GetElemType())
if err != nil {
return nil, err
}
return ListType(et), nil
case *exprpb.Type_MapType_:
kt, err := ExprTypeToType(t.GetMapType().GetKeyType())
if err != nil {
return nil, err
}
vt, err := ExprTypeToType(t.GetMapType().GetValueType())
if err != nil {
return nil, err
}
return MapType(kt, vt), nil
case *exprpb.Type_MessageType:
switch t.GetMessageType() {
case "google.protobuf.Any":
return AnyType, nil
case "google.protobuf.Duration":
return DurationType, nil
case "google.protobuf.Timestamp":
return TimestampType, nil
case "google.protobuf.Value":
return DynType, nil
case "google.protobuf.ListValue":
return ListType(DynType), nil
case "google.protobuf.Struct":
return MapType(StringType, DynType), nil
case "google.protobuf.BoolValue":
return NullableType(BoolType), nil
case "google.protobuf.BytesValue":
return NullableType(BytesType), nil
case "google.protobuf.DoubleValue", "google.protobuf.FloatValue":
return NullableType(DoubleType), nil
case "google.protobuf.Int32Value", "google.protobuf.Int64Value":
return NullableType(IntType), nil
case "google.protobuf.StringValue":
return NullableType(StringType), nil
case "google.protobuf.UInt32Value", "google.protobuf.UInt64Value":
return NullableType(UintType), nil
default:
return ObjectType(t.GetMessageType()), nil
}
case *exprpb.Type_Null:
return NullType, nil
case *exprpb.Type_Primitive:
switch t.GetPrimitive() {
case exprpb.Type_BOOL:
return BoolType, nil
case exprpb.Type_BYTES:
return BytesType, nil
case exprpb.Type_DOUBLE:
return DoubleType, nil
case exprpb.Type_INT64:
return IntType, nil
case exprpb.Type_STRING:
return StringType, nil
case exprpb.Type_UINT64:
return UintType, nil
default:
return nil, fmt.Errorf("unsupported primitive type: %v", t)
}
case *exprpb.Type_TypeParam:
return TypeParamType(t.GetTypeParam()), nil
case *exprpb.Type_Type:
return TypeType, nil
case *exprpb.Type_WellKnown:
switch t.GetWellKnown() {
case exprpb.Type_ANY:
return AnyType, nil
case exprpb.Type_DURATION:
return DurationType, nil
case exprpb.Type_TIMESTAMP:
return TimestampType, nil
default:
return nil, fmt.Errorf("unsupported well-known type: %v", t)
}
case *exprpb.Type_Wrapper:
t, err := ExprTypeToType(&exprpb.Type{TypeKind: &exprpb.Type_Primitive{Primitive: t.GetWrapper()}})
if err != nil {
return nil, err
}
return NullableType(t), nil
default:
return nil, fmt.Errorf("unsupported type: %v", t)
}
}
// ExprDeclToDeclaration converts a protobuf CEL declaration to a CEL-native declaration, either a Variable or Function.
func ExprDeclToDeclaration(d *exprpb.Decl) (EnvOption, error) {
switch d.GetDeclKind().(type) {
case *exprpb.Decl_Function:
overloads := d.GetFunction().GetOverloads()
opts := make([]FunctionOpt, len(overloads))
for i, o := range overloads {
args := make([]*Type, len(o.GetParams()))
for j, p := range o.GetParams() {
a, err := ExprTypeToType(p)
if err != nil {
return nil, err
}
args[j] = a
}
res, err := ExprTypeToType(o.GetResultType())
if err != nil {
return nil, err
}
opts[i] = Overload(o.GetOverloadId(), args, res)
}
return Function(d.GetName(), opts...), nil
case *exprpb.Decl_Ident:
t, err := ExprTypeToType(d.GetIdent().GetType())
if err != nil {
return nil, err
}
return Variable(d.GetName(), t), nil
default:
return nil, fmt.Errorf("unsupported decl: %v", d)
}
}
func functionDeclToExprDecl(f *functionDecl) (*exprpb.Decl, error) {
overloads := make([]*exprpb.Decl_FunctionDecl_Overload, len(f.overloads))
i := 0
for _, o := range f.overloads {
paramNames := map[string]struct{}{}
argTypes := make([]*exprpb.Type, len(o.argTypes))
for j, a := range o.argTypes {
collectParamNames(paramNames, a)
at, err := TypeToExprType(a)
if err != nil {
return nil, err
}
argTypes[j] = at
}
collectParamNames(paramNames, o.resultType)
resultType, err := TypeToExprType(o.resultType)
if err != nil {
return nil, err
}
if len(paramNames) == 0 {
if o.memberFunction {
overloads[i] = decls.NewInstanceOverload(o.id, argTypes, resultType)
} else {
overloads[i] = decls.NewOverload(o.id, argTypes, resultType)
}
} else {
params := []string{}
for pn := range paramNames {
params = append(params, pn)
}
if o.memberFunction {
overloads[i] = decls.NewParameterizedInstanceOverload(o.id, argTypes, resultType, params)
} else {
overloads[i] = decls.NewParameterizedOverload(o.id, argTypes, resultType, params)
}
}
i++
}
return decls.NewFunction(f.name, overloads...), nil
}
func collectParamNames(paramNames map[string]struct{}, arg *Type) {
if arg.kind == TypeParamKind {
paramNames[arg.runtimeType.TypeName()] = struct{}{}
}
for _, param := range arg.parameters {
collectParamNames(paramNames, param)
}
}
|