File: attributes.go

package info (click to toggle)
caddy 2.6.2-14
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,876 kB
  • sloc: sh: 730; makefile: 30
file content (1051 lines) | stat: -rw-r--r-- 30,735 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package interpreter

import (
	"fmt"
	"math"

	"github.com/google/cel-go/common/containers"
	"github.com/google/cel-go/common/types"
	"github.com/google/cel-go/common/types/ref"
	"github.com/google/cel-go/common/types/traits"

	exprpb "google.golang.org/genproto/googleapis/api/expr/v1alpha1"
)

// AttributeFactory provides methods creating Attribute and Qualifier values.
type AttributeFactory interface {
	// AbsoluteAttribute creates an attribute that refers to a top-level variable name.
	//
	// Checked expressions generate absolute attribute with a single name.
	// Parse-only expressions may have more than one possible absolute identifier when the
	// expression is created within a container, e.g. package or namespace.
	//
	// When there is more than one name supplied to the AbsoluteAttribute call, the names
	// must be in CEL's namespace resolution order. The name arguments provided here are
	// returned in the same order as they were provided by the NamespacedAttribute
	// CandidateVariableNames method.
	AbsoluteAttribute(id int64, names ...string) NamespacedAttribute

	// ConditionalAttribute creates an attribute with two Attribute branches, where the Attribute
	// that is resolved depends on the boolean evaluation of the input 'expr'.
	ConditionalAttribute(id int64, expr Interpretable, t, f Attribute) Attribute

	// MaybeAttribute creates an attribute that refers to either a field selection or a namespaced
	// variable name.
	//
	// Only expressions which have not been type-checked may generate oneof attributes.
	MaybeAttribute(id int64, name string) Attribute

	// RelativeAttribute creates an attribute whose value is a qualification of a dynamic
	// computation rather than a static variable reference.
	RelativeAttribute(id int64, operand Interpretable) Attribute

	// NewQualifier creates a qualifier on the target object with a given value.
	//
	// The 'val' may be an Attribute or any proto-supported map key type: bool, int, string, uint.
	//
	// The qualifier may consider the object type being qualified, if present. If absent, the
	// qualification should be considered dynamic and the qualification should still work, though
	// it may be sub-optimal.
	NewQualifier(objType *exprpb.Type, qualID int64, val interface{}) (Qualifier, error)
}

// Qualifier marker interface for designating different qualifier values and where they appear
// within field selections and index call expressions (`_[_]`).
type Qualifier interface {
	// ID where the qualifier appears within an expression.
	ID() int64

	// Qualify performs a qualification, e.g. field selection, on the input object and returns
	// the value or error that results.
	Qualify(vars Activation, obj interface{}) (interface{}, error)
}

// ConstantQualifier interface embeds the Qualifier interface and provides an option to inspect the
// qualifier's constant value.
//
// Non-constant qualifiers are of Attribute type.
type ConstantQualifier interface {
	Qualifier

	Value() ref.Val
}

// Attribute values are a variable or value with an optional set of qualifiers, such as field, key,
// or index accesses.
type Attribute interface {
	Qualifier

	// AddQualifier adds a qualifier on the Attribute or error if the qualification is not a valid
	// qualifier type.
	AddQualifier(Qualifier) (Attribute, error)

	// Resolve returns the value of the Attribute given the current Activation.
	Resolve(Activation) (interface{}, error)
}

// NamespacedAttribute values are a variable within a namespace, and an optional set of qualifiers
// such as field, key, or index accesses.
type NamespacedAttribute interface {
	Attribute

	// CandidateVariableNames returns the possible namespaced variable names for this Attribute in
	// the CEL namespace resolution order.
	CandidateVariableNames() []string

	// Qualifiers returns the list of qualifiers associated with the Attribute.s
	Qualifiers() []Qualifier

	// TryResolve attempts to return the value of the attribute given the current Activation.
	// If an error is encountered during attribute resolution, it will be returned immediately.
	// If the attribute cannot be resolved within the Activation, the result must be: `nil`,
	// `false`, `nil`.
	TryResolve(Activation) (interface{}, bool, error)
}

// NewAttributeFactory returns a default AttributeFactory which is produces Attribute values
// capable of resolving types by simple names and qualify the values using the supported qualifier
// types: bool, int, string, and uint.
func NewAttributeFactory(cont *containers.Container,
	a ref.TypeAdapter,
	p ref.TypeProvider) AttributeFactory {
	return &attrFactory{
		container: cont,
		adapter:   a,
		provider:  p,
	}
}

type attrFactory struct {
	container *containers.Container
	adapter   ref.TypeAdapter
	provider  ref.TypeProvider
}

// AbsoluteAttribute refers to a variable value and an optional qualifier path.
//
// The namespaceNames represent the names the variable could have based on namespace
// resolution rules.
func (r *attrFactory) AbsoluteAttribute(id int64, names ...string) NamespacedAttribute {
	return &absoluteAttribute{
		id:             id,
		namespaceNames: names,
		qualifiers:     []Qualifier{},
		adapter:        r.adapter,
		provider:       r.provider,
		fac:            r,
	}
}

// ConditionalAttribute supports the case where an attribute selection may occur on a conditional
// expression, e.g. (cond ? a : b).c
func (r *attrFactory) ConditionalAttribute(id int64, expr Interpretable, t, f Attribute) Attribute {
	return &conditionalAttribute{
		id:      id,
		expr:    expr,
		truthy:  t,
		falsy:   f,
		adapter: r.adapter,
		fac:     r,
	}
}

// MaybeAttribute collects variants of unchecked AbsoluteAttribute values which could either be
// direct variable accesses or some combination of variable access with qualification.
func (r *attrFactory) MaybeAttribute(id int64, name string) Attribute {
	return &maybeAttribute{
		id: id,
		attrs: []NamespacedAttribute{
			r.AbsoluteAttribute(id, r.container.ResolveCandidateNames(name)...),
		},
		adapter:  r.adapter,
		provider: r.provider,
		fac:      r,
	}
}

// RelativeAttribute refers to an expression and an optional qualifier path.
func (r *attrFactory) RelativeAttribute(id int64, operand Interpretable) Attribute {
	return &relativeAttribute{
		id:         id,
		operand:    operand,
		qualifiers: []Qualifier{},
		adapter:    r.adapter,
		fac:        r,
	}
}

// NewQualifier is an implementation of the AttributeFactory interface.
func (r *attrFactory) NewQualifier(objType *exprpb.Type,
	qualID int64,
	val interface{}) (Qualifier, error) {
	// Before creating a new qualifier check to see if this is a protobuf message field access.
	// If so, use the precomputed GetFrom qualification method rather than the standard
	// stringQualifier.
	str, isStr := val.(string)
	if isStr && objType != nil && objType.GetMessageType() != "" {
		ft, found := r.provider.FindFieldType(objType.GetMessageType(), str)
		if found && ft.IsSet != nil && ft.GetFrom != nil {
			return &fieldQualifier{
				id:        qualID,
				Name:      str,
				FieldType: ft,
				adapter:   r.adapter,
			}, nil
		}
	}
	return newQualifier(r.adapter, qualID, val)
}

type absoluteAttribute struct {
	id int64
	// namespaceNames represent the names the variable could have based on declared container
	// (package) of the expression.
	namespaceNames []string
	qualifiers     []Qualifier
	adapter        ref.TypeAdapter
	provider       ref.TypeProvider
	fac            AttributeFactory
}

// ID implements the Attribute interface method.
func (a *absoluteAttribute) ID() int64 {
	return a.id
}

// Cost implements the Coster interface method.
func (a *absoluteAttribute) Cost() (min, max int64) {
	for _, q := range a.qualifiers {
		minQ, maxQ := estimateCost(q)
		min += minQ
		max += maxQ
	}
	min++ // For object retrieval.
	max++
	return
}

// AddQualifier implements the Attribute interface method.
func (a *absoluteAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
	a.qualifiers = append(a.qualifiers, qual)
	return a, nil
}

// CandidateVariableNames implements the NamespaceAttribute interface method.
func (a *absoluteAttribute) CandidateVariableNames() []string {
	return a.namespaceNames
}

// Qualifiers returns the list of Qualifier instances associated with the namespaced attribute.
func (a *absoluteAttribute) Qualifiers() []Qualifier {
	return a.qualifiers
}

// Qualify is an implementation of the Qualifier interface method.
func (a *absoluteAttribute) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	val, err := a.Resolve(vars)
	if err != nil {
		return nil, err
	}
	unk, isUnk := val.(types.Unknown)
	if isUnk {
		return unk, nil
	}
	qual, err := a.fac.NewQualifier(nil, a.id, val)
	if err != nil {
		return nil, err
	}
	return qual.Qualify(vars, obj)
}

// Resolve returns the resolved Attribute value given the Activation, or error if the Attribute
// variable is not found, or if its Qualifiers cannot be applied successfully.
func (a *absoluteAttribute) Resolve(vars Activation) (interface{}, error) {
	obj, found, err := a.TryResolve(vars)
	if err != nil {
		return nil, err
	}
	if found {
		return obj, nil
	}
	return nil, fmt.Errorf("no such attribute: %v", a)
}

// String implements the Stringer interface method.
func (a *absoluteAttribute) String() string {
	return fmt.Sprintf("id: %v, names: %v", a.id, a.namespaceNames)
}

// TryResolve iterates through the namespaced variable names until one is found within the
// Activation or TypeProvider.
//
// If the variable name cannot be found as an Activation variable or in the TypeProvider as
// a type, then the result is `nil`, `false`, `nil` per the interface requirement.
func (a *absoluteAttribute) TryResolve(vars Activation) (interface{}, bool, error) {
	for _, nm := range a.namespaceNames {
		// If the variable is found, process it. Otherwise, wait until the checks to
		// determine whether the type is unknown before returning.
		op, found := vars.ResolveName(nm)
		if found {
			var err error
			for _, qual := range a.qualifiers {
				op, err = qual.Qualify(vars, op)
				if err != nil {
					return nil, true, err
				}
			}
			return op, true, nil
		}
		// Attempt to resolve the qualified type name if the name is not a variable identifier.
		typ, found := a.provider.FindIdent(nm)
		if found {
			if len(a.qualifiers) == 0 {
				return typ, true, nil
			}
			return nil, true, fmt.Errorf("no such attribute: %v", typ)
		}
	}
	return nil, false, nil
}

type conditionalAttribute struct {
	id      int64
	expr    Interpretable
	truthy  Attribute
	falsy   Attribute
	adapter ref.TypeAdapter
	fac     AttributeFactory
}

// ID is an implementation of the Attribute interface method.
func (a *conditionalAttribute) ID() int64 {
	return a.id
}

// Cost provides the heuristic cost of a ternary operation <expr> ? <t> : <f>.
// The cost is computed as cost(expr) plus the min/max costs of evaluating either
// `t` or `f`.
func (a *conditionalAttribute) Cost() (min, max int64) {
	tMin, tMax := estimateCost(a.truthy)
	fMin, fMax := estimateCost(a.falsy)
	eMin, eMax := estimateCost(a.expr)
	return eMin + findMin(tMin, fMin), eMax + findMax(tMax, fMax)
}

// AddQualifier appends the same qualifier to both sides of the conditional, in effect managing
// the qualification of alternate attributes.
func (a *conditionalAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
	_, err := a.truthy.AddQualifier(qual)
	if err != nil {
		return nil, err
	}
	_, err = a.falsy.AddQualifier(qual)
	if err != nil {
		return nil, err
	}
	return a, nil
}

// Qualify is an implementation of the Qualifier interface method.
func (a *conditionalAttribute) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	val, err := a.Resolve(vars)
	if err != nil {
		return nil, err
	}
	unk, isUnk := val.(types.Unknown)
	if isUnk {
		return unk, nil
	}
	qual, err := a.fac.NewQualifier(nil, a.id, val)
	if err != nil {
		return nil, err
	}
	return qual.Qualify(vars, obj)
}

// Resolve evaluates the condition, and then resolves the truthy or falsy branch accordingly.
func (a *conditionalAttribute) Resolve(vars Activation) (interface{}, error) {
	val := a.expr.Eval(vars)
	if types.IsError(val) {
		return nil, val.(*types.Err)
	}
	if val == types.True {
		return a.truthy.Resolve(vars)
	}
	if val == types.False {
		return a.falsy.Resolve(vars)
	}
	if types.IsUnknown(val) {
		return val, nil
	}
	return nil, types.MaybeNoSuchOverloadErr(val).(*types.Err)
}

// String is an implementation of the Stringer interface method.
func (a *conditionalAttribute) String() string {
	return fmt.Sprintf("id: %v, truthy attribute: %v, falsy attribute: %v", a.id, a.truthy, a.falsy)
}

type maybeAttribute struct {
	id       int64
	attrs    []NamespacedAttribute
	adapter  ref.TypeAdapter
	provider ref.TypeProvider
	fac      AttributeFactory
}

// ID is an implementation of the Attribute interface method.
func (a *maybeAttribute) ID() int64 {
	return a.id
}

// Cost implements the Coster interface method. The min cost is computed as the minimal cost among
// all the possible attributes, the max cost ditto.
func (a *maybeAttribute) Cost() (min, max int64) {
	min, max = math.MaxInt64, 0
	for _, a := range a.attrs {
		minA, maxA := estimateCost(a)
		min = findMin(min, minA)
		max = findMax(max, maxA)
	}
	return
}

func findMin(x, y int64) int64 {
	if x < y {
		return x
	}
	return y
}

func findMax(x, y int64) int64 {
	if x > y {
		return x
	}
	return y
}

// AddQualifier adds a qualifier to each possible attribute variant, and also creates
// a new namespaced variable from the qualified value.
//
// The algorithm for building the maybe attribute is as follows:
//
// 1. Create a maybe attribute from a simple identifier when it occurs in a parsed-only expression
//
//    mb = MaybeAttribute(<id>, "a")
//
//    Initializing the maybe attribute creates an absolute attribute internally which includes the
//    possible namespaced names of the attribute. In this example, let's assume we are in namespace
//    'ns', then the maybe is either one of the following variable names:
//
//    possible variables names -- ns.a, a
//
// 2. Adding a qualifier to the maybe means that the variable name could be a longer qualified
//    name, or a field selection on one of the possible variable names produced earlier:
//
//    mb.AddQualifier("b")
//
//    possible variables names -- ns.a.b, a.b
//    possible field selection -- ns.a['b'], a['b']
//
// If none of the attributes within the maybe resolves a value, the result is an error.
func (a *maybeAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
	str := ""
	isStr := false
	cq, isConst := qual.(ConstantQualifier)
	if isConst {
		str, isStr = cq.Value().Value().(string)
	}
	var augmentedNames []string
	// First add the qualifier to all existing attributes in the oneof.
	for _, attr := range a.attrs {
		if isStr && len(attr.Qualifiers()) == 0 {
			candidateVars := attr.CandidateVariableNames()
			augmentedNames = make([]string, len(candidateVars))
			for i, name := range candidateVars {
				augmentedNames[i] = fmt.Sprintf("%s.%s", name, str)
			}
		}
		_, err := attr.AddQualifier(qual)
		if err != nil {
			return nil, err
		}
	}
	// Next, ensure the most specific variable / type reference is searched first.
	a.attrs = append([]NamespacedAttribute{a.fac.AbsoluteAttribute(qual.ID(), augmentedNames...)}, a.attrs...)
	return a, nil
}

// Qualify is an implementation of the Qualifier interface method.
func (a *maybeAttribute) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	val, err := a.Resolve(vars)
	if err != nil {
		return nil, err
	}
	unk, isUnk := val.(types.Unknown)
	if isUnk {
		return unk, nil
	}
	qual, err := a.fac.NewQualifier(nil, a.id, val)
	if err != nil {
		return nil, err
	}
	return qual.Qualify(vars, obj)
}

// Resolve follows the variable resolution rules to determine whether the attribute is a variable
// or a field selection.
func (a *maybeAttribute) Resolve(vars Activation) (interface{}, error) {
	for _, attr := range a.attrs {
		obj, found, err := attr.TryResolve(vars)
		// Return an error if one is encountered.
		if err != nil {
			return nil, err
		}
		// If the object was found, return it.
		if found {
			return obj, nil
		}
	}
	// Else, produce a no such attribute error.
	return nil, fmt.Errorf("no such attribute: %v", a)
}

// String is an implementation of the Stringer interface method.
func (a *maybeAttribute) String() string {
	return fmt.Sprintf("id: %v, attributes: %v", a.id, a.attrs)
}

type relativeAttribute struct {
	id         int64
	operand    Interpretable
	qualifiers []Qualifier
	adapter    ref.TypeAdapter
	fac        AttributeFactory
}

// ID is an implementation of the Attribute interface method.
func (a *relativeAttribute) ID() int64 {
	return a.id
}

// Cost implements the Coster interface method.
func (a *relativeAttribute) Cost() (min, max int64) {
	min, max = estimateCost(a.operand)
	for _, qual := range a.qualifiers {
		minQ, maxQ := estimateCost(qual)
		min += minQ
		max += maxQ
	}
	return
}

// AddQualifier implements the Attribute interface method.
func (a *relativeAttribute) AddQualifier(qual Qualifier) (Attribute, error) {
	a.qualifiers = append(a.qualifiers, qual)
	return a, nil
}

// Qualify is an implementation of the Qualifier interface method.
func (a *relativeAttribute) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	val, err := a.Resolve(vars)
	if err != nil {
		return nil, err
	}
	unk, isUnk := val.(types.Unknown)
	if isUnk {
		return unk, nil
	}
	qual, err := a.fac.NewQualifier(nil, a.id, val)
	if err != nil {
		return nil, err
	}
	return qual.Qualify(vars, obj)
}

// Resolve expression value and qualifier relative to the expression result.
func (a *relativeAttribute) Resolve(vars Activation) (interface{}, error) {
	// First, evaluate the operand.
	v := a.operand.Eval(vars)
	if types.IsError(v) {
		return nil, v.(*types.Err)
	}
	if types.IsUnknown(v) {
		return v, nil
	}
	// Next, qualify it. Qualification handles unknowns as well, so there's no need to recheck.
	var err error
	var obj interface{} = v
	for _, qual := range a.qualifiers {
		obj, err = qual.Qualify(vars, obj)
		if err != nil {
			return nil, err
		}
	}
	return obj, nil
}

// String is an implementation of the Stringer interface method.
func (a *relativeAttribute) String() string {
	return fmt.Sprintf("id: %v, operand: %v", a.id, a.operand)
}

func newQualifier(adapter ref.TypeAdapter, id int64, v interface{}) (Qualifier, error) {
	var qual Qualifier
	switch val := v.(type) {
	case Attribute:
		return &attrQualifier{id: id, Attribute: val}, nil
	case string:
		qual = &stringQualifier{id: id, value: val, celValue: types.String(val), adapter: adapter}
	case int:
		qual = &intQualifier{id: id, value: int64(val), celValue: types.Int(val), adapter: adapter}
	case int32:
		qual = &intQualifier{id: id, value: int64(val), celValue: types.Int(val), adapter: adapter}
	case int64:
		qual = &intQualifier{id: id, value: val, celValue: types.Int(val), adapter: adapter}
	case uint:
		qual = &uintQualifier{id: id, value: uint64(val), celValue: types.Uint(val), adapter: adapter}
	case uint32:
		qual = &uintQualifier{id: id, value: uint64(val), celValue: types.Uint(val), adapter: adapter}
	case uint64:
		qual = &uintQualifier{id: id, value: val, celValue: types.Uint(val), adapter: adapter}
	case bool:
		qual = &boolQualifier{id: id, value: val, celValue: types.Bool(val), adapter: adapter}
	case float32:
		qual = &doubleQualifier{id: id, value: float64(val), celValue: types.Double(val), adapter: adapter}
	case float64:
		qual = &doubleQualifier{id: id, value: val, celValue: types.Double(val), adapter: adapter}
	case types.String:
		qual = &stringQualifier{id: id, value: string(val), celValue: val, adapter: adapter}
	case types.Int:
		qual = &intQualifier{id: id, value: int64(val), celValue: val, adapter: adapter}
	case types.Uint:
		qual = &uintQualifier{id: id, value: uint64(val), celValue: val, adapter: adapter}
	case types.Bool:
		qual = &boolQualifier{id: id, value: bool(val), celValue: val, adapter: adapter}
	case types.Double:
		qual = &doubleQualifier{id: id, value: float64(val), celValue: val, adapter: adapter}
	default:
		return nil, fmt.Errorf("invalid qualifier type: %T", v)
	}
	return qual, nil
}

type attrQualifier struct {
	id int64
	Attribute
}

func (q *attrQualifier) ID() int64 {
	return q.id
}

// Cost returns zero for constant field qualifiers
func (q *attrQualifier) Cost() (min, max int64) {
	return estimateCost(q.Attribute)
}

type stringQualifier struct {
	id       int64
	value    string
	celValue ref.Val
	adapter  ref.TypeAdapter
}

// ID is an implementation of the Qualifier interface method.
func (q *stringQualifier) ID() int64 {
	return q.id
}

// Qualify implements the Qualifier interface method.
func (q *stringQualifier) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	s := q.value
	isMap := false
	isKey := false
	switch o := obj.(type) {
	case map[string]interface{}:
		isMap = true
		obj, isKey = o[s]
	case map[string]string:
		isMap = true
		obj, isKey = o[s]
	case map[string]int:
		isMap = true
		obj, isKey = o[s]
	case map[string]int32:
		isMap = true
		obj, isKey = o[s]
	case map[string]int64:
		isMap = true
		obj, isKey = o[s]
	case map[string]uint:
		isMap = true
		obj, isKey = o[s]
	case map[string]uint32:
		isMap = true
		obj, isKey = o[s]
	case map[string]uint64:
		isMap = true
		obj, isKey = o[s]
	case map[string]float32:
		isMap = true
		obj, isKey = o[s]
	case map[string]float64:
		isMap = true
		obj, isKey = o[s]
	case map[string]bool:
		isMap = true
		obj, isKey = o[s]
	case types.Unknown:
		return o, nil
	default:
		elem, err := refResolve(q.adapter, q.celValue, obj)
		if err != nil {
			return nil, err
		}
		return elem, nil
	}
	if isMap && !isKey {
		return nil, fmt.Errorf("no such key: %v", s)
	}
	return obj, nil
}

// Value implements the ConstantQualifier interface
func (q *stringQualifier) Value() ref.Val {
	return q.celValue
}

// Cost returns zero for constant field qualifiers
func (q *stringQualifier) Cost() (min, max int64) {
	return 0, 0
}

type intQualifier struct {
	id       int64
	value    int64
	celValue ref.Val
	adapter  ref.TypeAdapter
}

// ID is an implementation of the Qualifier interface method.
func (q *intQualifier) ID() int64 {
	return q.id
}

// Qualify implements the Qualifier interface method.
func (q *intQualifier) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	i := q.value
	isMap := false
	isKey := false
	isIndex := false
	switch o := obj.(type) {
	// The specialized map types supported by an int qualifier are considerably fewer than the set
	// of specialized map types supported by string qualifiers since they are less frequently used
	// than string-based map keys. Additional specializations may be added in the future if
	// desired.
	case map[int]interface{}:
		isMap = true
		obj, isKey = o[int(i)]
	case map[int32]interface{}:
		isMap = true
		obj, isKey = o[int32(i)]
	case map[int64]interface{}:
		isMap = true
		obj, isKey = o[i]
	case []interface{}:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []string:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []int:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []int32:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []int64:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []uint:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []uint32:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []uint64:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []float32:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []float64:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case []bool:
		isIndex = i >= 0 && i < int64(len(o))
		if isIndex {
			obj = o[i]
		}
	case types.Unknown:
		return o, nil
	default:
		elem, err := refResolve(q.adapter, q.celValue, obj)
		if err != nil {
			return nil, err
		}
		return elem, nil
	}
	if isMap && !isKey {
		return nil, fmt.Errorf("no such key: %v", i)
	}
	if !isMap && !isIndex {
		return nil, fmt.Errorf("index out of bounds: %v", i)
	}
	return obj, nil
}

// Value implements the ConstantQualifier interface
func (q *intQualifier) Value() ref.Val {
	return q.celValue
}

// Cost returns zero for constant field qualifiers
func (q *intQualifier) Cost() (min, max int64) {
	return 0, 0
}

type uintQualifier struct {
	id       int64
	value    uint64
	celValue ref.Val
	adapter  ref.TypeAdapter
}

// ID is an implementation of the Qualifier interface method.
func (q *uintQualifier) ID() int64 {
	return q.id
}

// Qualify implements the Qualifier interface method.
func (q *uintQualifier) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	u := q.value
	isMap := false
	isKey := false
	switch o := obj.(type) {
	// The specialized map types supported by a uint qualifier are considerably fewer than the set
	// of specialized map types supported by string qualifiers since they are less frequently used
	// than string-based map keys. Additional specializations may be added in the future if
	// desired.
	case map[uint]interface{}:
		isMap = true
		obj, isKey = o[uint(u)]
	case map[uint32]interface{}:
		isMap = true
		obj, isKey = o[uint32(u)]
	case map[uint64]interface{}:
		isMap = true
		obj, isKey = o[u]
	case types.Unknown:
		return o, nil
	default:
		elem, err := refResolve(q.adapter, q.celValue, obj)
		if err != nil {
			return nil, err
		}
		return elem, nil
	}
	if isMap && !isKey {
		return nil, fmt.Errorf("no such key: %v", u)
	}
	return obj, nil
}

// Value implements the ConstantQualifier interface
func (q *uintQualifier) Value() ref.Val {
	return q.celValue
}

// Cost returns zero for constant field qualifiers
func (q *uintQualifier) Cost() (min, max int64) {
	return 0, 0
}

type boolQualifier struct {
	id       int64
	value    bool
	celValue ref.Val
	adapter  ref.TypeAdapter
}

// ID is an implementation of the Qualifier interface method.
func (q *boolQualifier) ID() int64 {
	return q.id
}

// Qualify implements the Qualifier interface method.
func (q *boolQualifier) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	b := q.value
	isKey := false
	switch o := obj.(type) {
	// The specialized map types supported by a bool qualifier are considerably fewer than the set
	// of specialized map types supported by string qualifiers since they are less frequently used
	// than string-based map keys. Additional specializations may be added in the future if
	// desired.
	case map[bool]interface{}:
		obj, isKey = o[b]
	case types.Unknown:
		return o, nil
	default:
		elem, err := refResolve(q.adapter, q.celValue, obj)
		if err != nil {
			return nil, err
		}
		return elem, nil
	}
	if !isKey {
		return nil, fmt.Errorf("no such key: %v", b)
	}
	return obj, nil
}

// Value implements the ConstantQualifier interface
func (q *boolQualifier) Value() ref.Val {
	return q.celValue
}

// Cost returns zero for constant field qualifiers
func (q *boolQualifier) Cost() (min, max int64) {
	return 0, 0
}

// fieldQualifier indicates that the qualification is a well-defined field with a known
// field type. When the field type is known this can be used to improve the speed and
// efficiency of field resolution.
type fieldQualifier struct {
	id        int64
	Name      string
	FieldType *ref.FieldType
	adapter   ref.TypeAdapter
}

// ID is an implementation of the Qualifier interface method.
func (q *fieldQualifier) ID() int64 {
	return q.id
}

// Qualify implements the Qualifier interface method.
func (q *fieldQualifier) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	if rv, ok := obj.(ref.Val); ok {
		obj = rv.Value()
	}
	return q.FieldType.GetFrom(obj)
}

// Value implements the ConstantQualifier interface
func (q *fieldQualifier) Value() ref.Val {
	return types.String(q.Name)
}

// Cost returns zero for constant field qualifiers
func (q *fieldQualifier) Cost() (min, max int64) {
	return 0, 0
}

// doubleQualifier qualifies a CEL object, map, or list using a double value.
//
// This qualifier is used for working with dynamic data like JSON or protobuf.Any where the value
// type may not be known ahead of time and may not conform to the standard types supported as valid
// protobuf map key types.
type doubleQualifier struct {
	id       int64
	value    float64
	celValue ref.Val
	adapter  ref.TypeAdapter
}

// ID is an implementation of the Qualifier interface method.
func (q *doubleQualifier) ID() int64 {
	return q.id
}

// Qualify implements the Qualifier interface method.
func (q *doubleQualifier) Qualify(vars Activation, obj interface{}) (interface{}, error) {
	switch o := obj.(type) {
	case types.Unknown:
		return o, nil
	default:
		elem, err := refResolve(q.adapter, q.celValue, obj)
		if err != nil {
			return nil, err
		}
		return elem, nil
	}
}

// refResolve attempts to convert the value to a CEL value and then uses reflection methods
// to try and resolve the qualifier.
func refResolve(adapter ref.TypeAdapter, idx ref.Val, obj interface{}) (ref.Val, error) {
	celVal := adapter.NativeToValue(obj)
	mapper, isMapper := celVal.(traits.Mapper)
	if isMapper {
		elem, found := mapper.Find(idx)
		if !found {
			return nil, fmt.Errorf("no such key: %v", idx)
		}
		return elem, nil
	}
	indexer, isIndexer := celVal.(traits.Indexer)
	if isIndexer {
		elem := indexer.Get(idx)
		if types.IsError(elem) {
			return nil, elem.(*types.Err)
		}
		return elem, nil
	}
	if types.IsUnknown(celVal) {
		return celVal, nil
	}
	// TODO: If the types.Err value contains more than just an error message at some point in the
	// future, then it would be reasonable to return error values as ref.Val types rather than
	// simple go error types.
	if types.IsError(celVal) {
		return nil, celVal.(*types.Err)
	}
	return nil, fmt.Errorf("no such key: %v", idx)
}