1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
/*
* BezierChain.cs
* Copyright © 2008-2011 kbinani
*
* This file is part of org.kbinani.cadencii.
*
* org.kbinani.cadencii is free software; you can redistribute it and/or
* modify it under the terms of the GPLv3 License.
*
* org.kbinani.cadencii is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#if JAVA
package org.kbinani.cadencii;
import java.awt.*;
import java.util.*;
import java.io.*;
import org.kbinani.*;
import org.kbinani.xml.*;
#else
using System;
using System.Runtime.Serialization;
using org.kbinani.java.awt;
using org.kbinani.java.util;
namespace org.kbinani.cadencii
{
using boolean = System.Boolean;
#endif
#if JAVA
public class BezierChain implements Cloneable, Serializable
#else
[Serializable]
public class BezierChain : IDisposable, ICloneable
#endif
{
#if JAVA
@XmlGenericType( BezierPoint.class )
#endif
public Vector<BezierPoint> points;
public double Default;
public int id;
private Color mColor;
const double EPSILON = 1e-9;
/// <summary>
/// このベジエ曲線の開始位置を取得します。データ点が1つも無い場合はdouble.NaNを返します
/// </summary>
public double getStart() {
if ( points.size() <= 0 ) {
return Double.NaN;
} else {
return points.get( 0 ).getBase().getX();
}
}
/// <summary>
/// このベジエ曲線の終了位置を取得します。データ点が1つも無い場合はdouble.NaNを返します
/// </summary>
public double getEnd() {
if ( points.size() <= 0 ) {
return Double.NaN;
} else {
return points.get( points.size() - 1 ).getBase().getX();
}
}
/// <summary>
/// 4つの点X0, C0, C1, X1から構成されるベジエ曲線を、位置xで2つに分割することで出来る7個の新しい点の座標を計算します。
/// X0, X1がデータ点、C0, C1が制御点となります。xがX0.X < x < X1.Xでない場合ArgumentOutOfRangeExceptionを投げます。
/// </summary>
/// <param name="X0"></param>
/// <param name="C0"></param>
/// <param name="C1"></param>
/// <param name="X1"></param>
/// <param name="x"></param>
/// <returns></returns>
public static PointD[] cutUnitBezier( PointD X0, PointD C0, PointD C1, PointD X1, double x ){
if ( X0.getX() >= x || x >= X1.getX() ) {
return null;
}
PointD[] ret = new PointD[7];
for ( int i = 0; i < 7; i++ ) {
ret[i] = new PointD();
}
ret[0].setX( X0.getX() );
ret[0].setY( X0.getY() );
ret[6].setX( X1.getX() );
ret[6].setY( X1.getY() );
double x1 = X0.getX();
double x2 = C0.getX();
double x3 = C1.getX();
double x4 = X1.getX();
double a3 = x4 - 3.0 * x3 + 3.0 * x2 - x1;
double a2 = 3.0 * x3 - 6.0 * x2 + 3.0 * x1;
double a1 = 3.0 * (x2 - x1);
double a0 = x1;
double t = solveCubicEquation( a3, a2, a1, a0, x );
x1 = X0.getY();
x2 = C0.getY();
x3 = C1.getY();
x4 = X1.getY();
a3 = x4 - 3 * x3 + 3 * x2 - x1;
a2 = 3 * x3 - 6 * x2 + 3 * x1;
a1 = 3 * (x2 - x1);
a0 = x1;
ret[3].setX( x );
ret[3].setY( ((a3 * t + a2) * t + a1) * t + a0 );
ret[1] = getMidPoint( X0, C0, t );
ret[5] = getMidPoint( C1, X1, t );
PointD m = getMidPoint( C0, C1, t );
ret[2] = getMidPoint( ret[1], m, t );
ret[4] = getMidPoint( m, ret[5], t );
return ret;
}
/// <summary>
/// 点p0, p1を結ぶ線分をt : 1 - tに分割する点の座標を計算します
/// </summary>
/// <param name="p0"></param>
/// <param name="p1"></param>
/// <param name="t"></param>
/// <returns></returns>
private static PointD getMidPoint( PointD p0, PointD p1, double t ) {
double x = p0.getX() + (p1.getX() - p0.getX()) * t;
double y = p0.getY() + (p1.getY() - p0.getY()) * t;
return new PointD( x, y );
}
public BezierChain extractPartialBezier( double t_start, double t_end )
#if JAVA
throws Exception
#endif
{
if ( this.size() <= 1 ) {
throw new Exception( "chain must has two or more bezier points" );
}
double start = this.points.get( 0 ).getBase().getX();
double end = this.points.get( this.size() - 1 ).getBase().getX();
// [from, to]が、このベジエ曲線の範囲内にあるかどうかを検査
if ( start > t_start || t_end > end ) {
throw new Exception( "no bezier point appeared in the range of \"from\" to \"to\"" );
}
// t_start, t_endが既存のベジエデータ点位置を被っていないかどうか検査しながらコピー
boolean t_start_added = false; // 最初の区間が追加された直後だけ立つフラグ
BezierChain edited = new BezierChain( mColor );
int count = 0;
for ( int i = 0; i < this.points.size() - 1; i++ ) {
if ( this.points.get( i ).getBase().getX() < t_start && t_start < this.points.get( i + 1 ).getBase().getX() ) {
if ( this.points.get( i ).getBase().getX() < t_end && t_end < this.points.get( i + 1 ).getBase().getX() ) {
#if DEBUG
AppManager.debugWriteLine( "points[i].Base.X < t_start < t_end < points[i + 1].Base.X" );
#endif
PointD x0 = this.points.get( i ).getBase();
PointD x1 = this.points.get( i + 1 ).getBase();
PointD c0 = (this.points.get( i ).getControlRightType() == BezierControlType.None) ?
x0 : this.points.get( i ).getControlRight();
PointD c1 = (this.points.get( i + 1 ).getControlLeftType() == BezierControlType.None) ?
x1 : this.points.get( i + 1 ).getControlLeft();
PointD[] res = cutUnitBezier( x0, c0, c1, x1, t_start );
x0 = res[3];
c0 = res[4];
c1 = res[5];
x1 = res[6];
res = cutUnitBezier( x0, c0, c1, x1, t_end );
BezierPoint left = new BezierPoint( res[0] );
BezierPoint right = new BezierPoint( res[3] );
left.setControlRight( res[1] );
right.setControlLeft( res[2] );
left.setControlRightType( this.points.get( i ).getControlRightType() );
right.setControlLeftType( this.points.get( i + 1 ).getControlLeftType() );
edited.add( left );
edited.add( right );
t_start_added = true;
break;
} else {
#if DEBUG
AppManager.debugWriteLine( "points[i].Base.X < t_start < points[i + 1].Base.X" );
#endif
PointD x0 = this.points.get( i ).getBase();
PointD x1 = this.points.get( i + 1 ).getBase();
PointD c0 = (this.points.get( i ).getControlRightType() == BezierControlType.None) ?
x0 : this.points.get( i ).getControlRight();
PointD c1 = (this.points.get( i + 1 ).getControlLeftType() == BezierControlType.None) ?
x1 : this.points.get( i + 1 ).getControlLeft();
PointD[] res = cutUnitBezier( x0, c0, c1, x1, t_start );
BezierPoint left = new BezierPoint( res[3] );
BezierPoint right = new BezierPoint( res[6] );
left.setControlRight( res[4] );
left.setControlRightType( this.points.get( i ).getControlRightType() );
right.setControlLeft( res[5] );
right.setControlRight( this.points.get( i + 1 ).getControlRight() );
right.setControlRightType( this.points.get( i + 1 ).getControlRightType() );
right.setControlLeftType( this.points.get( i + 1 ).getControlLeftType() );
edited.points.add( left );
count++;
edited.points.add( right );
count++;
t_start_added = true;
}
}
if ( t_start <= this.points.get( i ).getBase().getX() && this.points.get( i ).getBase().getX() <= t_end ) {
if ( !t_start_added ) {
edited.points.add( (BezierPoint)this.points.get( i ).clone() );
count++;
} else {
t_start_added = false;
}
}
if ( this.points.get( i ).getBase().getX() < t_end && t_end < this.points.get( i + 1 ).getBase().getX() ) {
PointD x0 = this.points.get( i ).getBase();
PointD x1 = this.points.get( i + 1 ).getBase();
PointD c0 = (this.points.get( i ).getControlRightType() == BezierControlType.None) ?
x0 : this.points.get( i ).getControlRight();
PointD c1 = (this.points.get( i + 1 ).getControlLeftType() == BezierControlType.None) ?
x1 : this.points.get( i + 1 ).getControlLeft();
PointD[] res = cutUnitBezier( x0, c0, c1, x1, t_end );
edited.points.get( count - 1 ).setControlRight( res[1] );
BezierPoint right = new BezierPoint( res[3] );
right.setControlLeft( res[2] );
right.setControlLeftType( this.points.get( i + 1 ).getControlLeftType() );
edited.add( right );
count++;
break;
}
}
if ( this.points.get( this.points.size() - 1 ).getBase().getX() == t_end && !t_start_added ) {
edited.add( (BezierPoint)this.points.get( this.points.size() - 1 ).clone() );
count++;
}
for ( int i = 0; i < edited.size(); i++ ) {
edited.points.get( i ).setID( i );
}
return edited;
}
/// <summary>
/// 登録されているデータ点を消去します
/// </summary>
public void clear() {
points.clear();
}
/// <summary>
/// 与えられたBezierChainがx軸について陰かどうかを判定する
/// </summary>
/// <param name="chain"></param>
/// <returns></returns>
public static boolean isBezierImplicit( BezierChain chain ) {
int size = chain.points.size();
if( size < 2 ){
return true;
}
BezierPoint last_point = chain.points.get( 0 );
for ( int i = 1; i < size; i++ ) {
BezierPoint point = chain.points.get( i );
double pt1 = last_point.getBase().getX();
double pt2 = (last_point.getControlRightType() == BezierControlType.None) ? pt1 : last_point.getControlRight().getX();
double pt4 = point.getBase().getX();
double pt3 = (point.getControlLeftType() == BezierControlType.None) ? pt4 : point.getControlLeft().getX();
if ( !isUnitBezierImplicit( pt1, pt2, pt3, pt4 ) ) {
return false;
}
last_point = point;
}
return true;
}
/// <summary>
/// 4つの制御点からなるベジエ曲線が、x軸について陰かどうかを判定する
/// </summary>
/// <param name="pt1">始点</param>
/// <param name="pt2">制御点1</param>
/// <param name="pt3">制御点2</param>
/// <param name="pt4">終点</param>
/// <returns></returns>
private static boolean isUnitBezierImplicit( double pt1, double pt2, double pt3, double pt4 ) {
double a = pt4 - 3.0 * pt3 + 3.0 * pt2 - pt1;
double b = 2.0 * pt3 - 4.0 * pt2 + 2.0 * pt1;
double c = pt2 - pt1;
if ( a == 0.0 ) {
if ( c >= 0.0 && b + c >= 0.0 ) {
return true;
} else {
return false;
}
} else if ( a > 0.0 ) {
if ( -b / (2.0 * a) <= 0.0 ) {
if ( c >= 0.0 ) {
return true;
} else {
return false;
}
} else if ( 1.0 <= -b / (2.0 * a) ) {
if ( a + b + c >= 0.0 ) {
return true;
} else {
return false;
}
} else {
if ( c - b * b / (4.0 * a) >= 0.0 ) {
return true;
} else {
return false;
}
}
} else {
if ( -b / (2.0 * a) <= 0.5 ) {
if ( a + b + c >= 0.0 ) {
return true;
} else {
return false;
}
} else {
if ( c >= 0.0 ) {
return true;
} else {
return false;
}
}
}
}
#if !JAVA
[OnDeserialized]
private void onDeserialized( StreamingContext sc ) {
for ( int i = 0; i < points.size(); i++ ) {
points.get( i ).setID( i );
}
}
#endif
public void Dispose() {
if ( points != null ) {
points.clear();
}
}
public int getNextId() {
if ( points.size() > 0 ) {
int max = points.get( 0 ).getID();
for ( int i = 1; i < points.size(); i++ ) {
max = Math.Max( max, points.get( i ).getID() );
}
return max + 1;
} else {
return 0;
}
}
public void getValueMinMax( ByRef<Double> min, ByRef<Double> max ) {
//todo: ベジエが有効なときに、曲線の描く最大値、最小値も考慮
min.value = Default;
max.value = Default;
for ( Iterator<BezierPoint> itr = points.iterator(); itr.hasNext(); ){
BezierPoint bp = itr.next();
min.value = Math.Min( min.value, bp.getBase().getY() );
max.value = Math.Max( max.value, bp.getBase().getY() );
}
}
public void getKeyMinMax( ByRef<Double> min, ByRef<Double> max ) {
min.value = Default;
max.value = Default;
for ( Iterator<BezierPoint> itr = points.iterator(); itr.hasNext(); ){
BezierPoint bp = itr.next();
min.value = Math.Min( min.value, bp.getBase().getX() );
max.value = Math.Max( max.value, bp.getBase().getX() );
}
}
public Object clone() {
BezierChain result = new BezierChain( this.mColor );
for ( Iterator<BezierPoint> itr = points.iterator(); itr.hasNext(); ){
BezierPoint bp = itr.next();
result.points.add( (BezierPoint)bp.clone() );
}
result.Default = this.Default;
result.id = id;
return result;
}
#if !JAVA
public Object Clone() {
return clone();
}
#endif
public BezierChain( Color curve ) {
points = new Vector<BezierPoint>();
mColor = curve;
}
public BezierChain() {
points = new Vector<BezierPoint>();
mColor = Color.black;
}
#if !JAVA
/*public Color Color {
get {
return getColor();
}
set {
setColor( value );
}
}*/
#endif
public Color getColor() {
return mColor;
}
public void setColor( Color value ) {
mColor = value;
}
public void add( BezierPoint bp ) {
if ( points == null ) {
points = new Vector<BezierPoint>();
mColor = Color.black;
}
points.add( bp );
Collections.sort( points );
}
public void removeElementAt( int id_ ) {
for ( int i = 0; i < points.size(); i++ ) {
if ( points.get( i ).getID() == id_ ) {
points.removeElementAt( i );
break;
}
}
}
public int size() {
if ( points == null ) {
return 0;
}
return points.size();
}
public double getValue( double x ) {
int count = points.size();
for ( int i = 0; i < count - 1; i++ ) {
BezierPoint bpi = points.get( i );
BezierPoint bpi1 = points.get( i + 1 );
if ( bpi.getBase().getX() <= x && x <= bpi1.getBase().getX() ) {
double x1 = bpi.getBase().getX();
double x4 = bpi1.getBase().getX();
if ( x1 == x ) {
return bpi.getBase().getY();
} else if ( x4 == x ) {
return bpi1.getBase().getY();
} else {
double x2 = bpi.getControlRight().getX();
double x3 = bpi1.getControlLeft().getX();
double a3 = x4 - 3 * x3 + 3 * x2 - x1;
double a2 = 3 * x3 - 6 * x2 + 3 * x1;
double a1 = 3 * (x2 - x1);
double a0 = x1;
double t = solveCubicEquation( a3, a2, a1, a0, x );
x1 = bpi.getBase().getY();
x2 = bpi.getControlRight().getY();
x3 = bpi1.getControlLeft().getY();
x4 = bpi1.getBase().getY();
a3 = x4 - 3 * x3 + 3 * x2 - x1;
a2 = 3 * x3 - 6 * x2 + 3 * x1;
a1 = 3 * (x2 - x1);
a0 = x1;
return ((a3 * t + a2) * t + a1) * t + a0;
}
}
}
return Default;
}
/// <summary>
/// 3次方程式a3*x^3 + a2*x^2 + a1*x + a0 = ansの解をニュートン法を使って計算します。ただし、単調増加である必要がある。
/// </summary>
/// <param name="a3"></param>
/// <param name="a2"></param>
/// <param name="a1"></param>
/// <param name="a0"></param>
/// <param name="ans"></param>
/// <returns></returns>
private static double solveCubicEquation( double a3, double a2, double a1, double a0, double ans ) {
double suggested_t = 0.5;
double a3_3 = a3 * 3.0;
double a2_2 = a2 * 2.0;
while ( (a3_3 * suggested_t + a2_2) * suggested_t + a1 == 0.0 ) {
suggested_t += 0.1;
}
double x = suggested_t;
double new_x = suggested_t;
for ( int i = 0; i < 5000; i++ ) {
new_x = x - (((a3 * x + a2) * x + a1) * x + a0 - ans) / ((a3_3 * x + a2_2) * x + a1);
if ( Math.Abs( new_x - x ) < EPSILON * new_x ) {
break;
}
x = new_x;
}
return new_x;
}
}
#if !JAVA
}
#endif
|