1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
#include "../../src/cadical.hpp"
#include <iostream>
#include <set>
#include <string>
extern "C" {
#include <assert.h>
}
CaDiCaL::Solver *solver = new CaDiCaL::Solver ();
void check_test_case (const std::vector<int> &constrain,
const std::vector<int> &assumptions,
const int expected_result) {
std::cout << "Test case: ";
std::cout << "<";
if (!constrain.empty ()) {
for (auto const &lit : constrain) {
solver->constrain (lit);
std::cout << " " << lit;
}
solver->constrain (0);
}
std::cout << " >[";
if (!assumptions.empty ()) {
for (auto const &lit : assumptions) {
solver->assume (lit);
std::cout << " " << lit;
}
}
std::cout << " ] -> ";
int res = solver->propagate ();
std::cout << res << " ";
assert (res == expected_result);
(void) expected_result;
// Check if returned set is subset of the expected result
if (res == 10) {
std::cout << " (model: [";
std::vector<int> model;
for (int idx = 1; idx <= 3; idx++) {
int lit = solver->val (idx);
model.push_back (lit);
std::cout << " " << lit;
}
std::cout << " ])" << std::endl;
if (!constrain.empty ()) {
for (auto const &lit : constrain) {
solver->constrain (lit);
}
solver->constrain (0);
}
if (!assumptions.empty ()) {
for (auto const &lit : assumptions) {
solver->assume (lit);
}
}
for (auto const &lit : model) {
solver->assume (lit);
}
res = solver->solve ();
assert (res == 10);
} else if (res == 0) {
std::cout << " (implicants: [";
std::vector<int> implicants;
solver->get_entrailed_literals (implicants);
// Check that every propagation holds
for (auto const &lit : implicants) {
std::cout << " " << lit;
for (auto const &lit : assumptions)
solver->assume (lit);
if (!constrain.empty ()) {
for (auto const &lit : constrain)
solver->constrain (lit);
solver->constrain (0);
}
solver->assume (-lit);
res = solver->solve ();
assert (res == 20);
}
std::cout << " ])" << std::endl;
} else {
std::cout << " (core: [";
assert (res == 20);
std::set<int> core;
for (auto const &lit : assumptions) {
if (solver->failed (lit)) {
core.insert (lit);
std::cout << " " << lit;
}
}
std::cout << " ])" << std::endl;
// Rerun call with the core-subset of assumptions
if (!constrain.empty ()) {
for (auto const &lit : constrain)
solver->constrain (lit);
solver->constrain (0);
}
for (auto const &lit : core) {
solver->assume (lit);
}
res = solver->solve ();
assert (res == 20);
}
}
// Taken from incproof.cpp test file
static std::string path (const char *name) {
const char *prefix = getenv ("CADICALBUILD");
std::string res = prefix ? prefix : ".";
res += "/test-api-propagate-";
res += name;
return res;
}
int main () {
// ------------------------------------------------------------------
// Encode Problem and check without assumptions.
enum { TIE = 1, SHIRT = 2, HAT = 3, SHOES = 4, SLIPPERS = 5 };
solver->set ("binary", 0);
solver->set ("lidrup", 1);
solver->trace_proof (path ("propagate_assumptions.lidrup").c_str ());
solver->set ("flushproof", 1);
solver->add (-TIE), solver->add (SHIRT), solver->add (0);
solver->add (TIE), solver->add (SHIRT), solver->add (0);
solver->add (-TIE), solver->add (-SHIRT), solver->add (0);
std::vector<int> constrain;
std::vector<int> assumptions;
std::set<int> result;
// ------------------------------------------------------------------
// Check different test cases, signature:
// ({literals of constrain},{assumption literals},expected results)
check_test_case ({}, {}, 0);
check_test_case ({HAT}, {}, 0);
check_test_case ({HAT}, {-HAT}, 20);
check_test_case ({}, {TIE, -TIE}, 20);
check_test_case ({}, {TIE}, 20);
check_test_case ({}, {-TIE}, 0);
check_test_case ({}, {SHIRT}, 0);
check_test_case ({}, {-SHIRT, HAT}, 20);
check_test_case ({}, {SHIRT, TIE}, 20);
check_test_case ({}, {SHIRT, -TIE}, 0);
check_test_case ({}, {-SHIRT, TIE}, 20);
check_test_case ({}, {-SHIRT, -TIE}, 20);
check_test_case ({HAT}, {SHIRT, -TIE, HAT}, 10);
// Check when root-level propagation satisfies
solver->add (-TIE), solver->add (0);
solver->add (SHIRT), solver->add (0);
solver->add (HAT), solver->add (0);
check_test_case ({HAT}, {SHIRT, -TIE, HAT}, 10);
check_test_case ({}, {}, 10);
// Check when root-level propagation falsifies
solver->add (-HAT), solver->add (0);
check_test_case ({}, {}, 20);
solver->close_proof_trace (true);
delete solver;
// Check when last level propagation is needed for conflict detection
solver = new CaDiCaL::Solver ();
solver->add (SHOES), solver->add (SLIPPERS), solver->add (0);
solver->add (-SHOES), solver->add (-SLIPPERS), solver->add (0);
solver->add (-HAT), solver->add (SLIPPERS), solver->add (0);
solver->add (-TIE), solver->add (SHIRT), solver->add (0);
solver->add (-6), solver->add (7), solver->add (0);
solver->add (-6), solver->add (-8), solver->add (0);
solver->add (-7), solver->add (-SHIRT), solver->add (-TIE),
solver->add (8), solver->add (0);
check_test_case ({}, {HAT, TIE, 6}, 20);
return 0;
}
|