1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
;;;-*- Mode:Lisp; Syntax:Common-Lisp; Package:CHAOS -*-
;;;
;;; Copyright (c) 2000-2018, Toshimi Sawada. All rights reserved.
;;;
;;; Redistribution and use in source and binary forms, with or without
;;; modification, are permitted provided that the following conditions
;;; are met:
;;;
;;; * Redistributions of source code must retain the above copyright
;;; notice, this list of conditions and the following disclaimer.
;;;
;;; * Redistributions in binary form must reproduce the above
;;; copyright notice, this list of conditions and the following
;;; disclaimer in the documentation and/or other materials
;;; provided with the distribution.
;;;
;;; THIS SOFTWARE IS PROVIDED BY THE AUTHOR 'AS IS' AND ANY EXPRESSED
;;; OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
;;; WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
;;; ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
;;; DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
;;; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
;;; GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
;;; INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
;;; WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;
(in-package :CHAOS)
#|==============================================================================
System: Chaos
Module: comlib
File: misc.lisp
==============================================================================|#
#-:chaos-debug
(declaim (optimize (speed 3) (safety 0) #-GCL (debug 0)))
#+:chaos-debug
(declaim (optimize (speed 1) (safety 3) #-GCL (debug 3)))
;;;== DESCTIPTION
;;;============================================================== A
;;;collection of misc utility functions and macros.
;;; ** NOTE ********************************************************************
;;; Many of the codes in this file are cllected from articles posted to
;;; some news groups (comp.lang.lisp, comp.lang.mcl, etc) or some mailing list
;;; long ago. And some were from my personal libraries.
;;; I have no infos codes other than the codes themselves.
;;; Please let me know if you find codes which are copyrighted, or you know the
;;; author. Email: sawada@sra.co.jp.
;;; ****************************************************************************
;;; *******
;;; KEYWORD_____________________________________________________________________
;;; *******
(defvar *keyword-package* (find-package :keyword))
(defun make-keyword (name)
(declare (type (or symbol simple-string) name)
(values symbol))
(if (stringp name)
(intern name *keyword-package*)
;; name must be a symbol
(intern (symbol-name name) *keyword-package*)))
;;; *****************
;;; OBJECT ALLOCATION____________________________________________________________
;;; *****************
;;; Allocating simple vector
;
(defmacro alloc-svec (size)
`(the simple-vector (make-array ,size :initial-element nil)))
(defmacro alloc-svec-fixnum (size)
`(the simple-vector (make-array ,size :initial-element 0)))
;;; GCL doesn't hadle simple-vector properly!
#-(or GCL EXCL)
(defmacro %svref (vector index)
`(svref ,vector (the fixnum ,index)))
#+EXCL
(defmacro %svref (vector index)
`(aref (the vector ,vector) (the fixnum ,index)))
#+GCL
(defmacro %svref (vector index)
`(aref (the vector ,vector) (the fixnum ,index)))
;;; AT-TOP-LEVEL : -> Bool
;;; determins whether we are at top level or not.
;;; *NOTE* : the top-level must maintain the following two
;;; variables properly:
;;; *chaos-input-source* : buind file (or stream?) during input
;;; from files.
;;; *chaos-input-level* : buind fixnum indicating nested file
;;; inputs levels.
;;;
(defun at-top-level ()
(and (null *chaos-input-source*)
(<= *chaos-input-level* 0)))
;;; ********************
;;; ENVIRONMENT-VARIABLE________________________________________________________
;;; ********************
;;; ** TO DO for other platforms.
(defun get-environment-variable (x)
#+(or :CCL CMU) (declare (ignore x))
#+(or KCL GCL) (si:getenv x)
#+LUCID (environment-variable x)
#+CMU nil
#+:CCL nil
#+:Allegro (sys:getenv x)
#+:CLISP (ext:getenv x)
#+:SBCL (sb-ext:posix-getenv x)
)
;;; *****
;;; DEBUG_______________________________________________________________________
;;; *****
(defvar *on-debug* nil)
(defvar *debug-level* 0)
(defmacro debug-msg ((msg &key (level 0)) &rest args)
`(if (and *on-debug* (<= ,level *debug-level*))
(funcall #'format *debug-io* ,msg ,@args)))
(defmacro debug-form (level &body body)
`(if (and *on-debug* (<= ,level *debug-level*))
(progn ,@body)))
(defun on-debug (&optional (level 1))
(setf *on-debug* t)
(setf *debug-level* level))
(defun off-debug ()
(setf *on-debug* nil)
(setf *debug-level* 0))
;;; ***************
;;; OBJECT ORDERING_____________________________________________________________
;;; ***************
;;; ordering some Common Lisp object
;;; symbol < cons < number < character < string < sequence
;;; integer < symbol < cons < othernumber
(defun ob< (x y)
(declare (type t x y))
(eq :lt (ob-compare x y)))
(defun ob-compare (x y)
(declare (type t x y))
(typecase x
(integer (typecase y
(integer (if (< (the integer x) (the integer y))
:lt
(if (< (the integer y) (the integer x))
:gt
:eq)))
(otherwise :lt)))
(symbol (typecase y
(symbol (if (eq x y)
:eq
(if (string-lessp (string (the symbol x))
(string (the symbol y)))
:lt
:gt)))
(integer :gt)
(otherwise :lt)))
(cons (typecase y
(cons (let ((comp-car (ob-compare (car x ) (car y))))
(if (eq :eq comp-car)
(ob-compare (cdr x) (cdr y))
comp-car)))
((or symbol integer) :gt)
(otherwise :lt)))
(number (typecase y
(number (if (< x y)
:lt
(if (< y x)
:gt
:eq)))
((or symbol integer cons) :gt)
(otherwise :lt)))
(character (typecase y
(character (if (char< (the character x)
(the character y))
:lt
(if (char< (the character y)
(the character x))
:gt
:eq)))
((or number cons symbol) :gt)
(otherwise :lt)))
(string (typecase y
(string (if (string-lessp x y)
:lt
(if (string-lessp y x)
:gt
:eq)))
((or character number cons symbol) :gt)
(otherwise :lt)))
(sequence (typecase y
(sequence (let ((lenx (length x))
(leny (length y)))
(declare (type fixnum lenx leny))
(dotimes (i (min lenx leny) (ob-compare lenx leny))
(declare (type fixnum i))
(let ((xi (elt x i))
(yi (elt y i)))
(let ((cmp (ob-compare xi yi)))
(unless (eq :eq cmp)
(return cmp)))))
:eq))
(otherwise :gt)))
(otherwise :lt)
;; (structure :lt)
;;
;; how about structure ...
;; (otherwise (break "not yet type ~s" (type-of x)))
))
;;; *********
;;; TOPO-SORT___________________________________________________________________
;;; *********
;;; will only apply to sequences of distinct items
;;; very simple method based on selection sort
;;; -- select minimal element of those remaining, swap with next and continue
;;; this is specialized to lists.
;;;
(defun topo-sort (lst pred)
(declare (type list lst)
(type function pred))
(let ((res lst)) ; save original list as final value
;; run through the positions of lst successively filling them in
(loop
(when (null lst) (return))
;; pos is location of val which is current minimal value
(let ((pos lst) (val (car lst)) (rest (cdr lst)))
;; scan through remainder of list rest updating pos and val
(loop ; -- select minimal
(when (null rest) (return))
(let ((valr (car rest)))
(when (funcall pred valr val)
(setq pos rest val valr))) ; have found new minimal value
(setq rest (cdr rest))) ; loop -- select minimal
;; swap values at front of lst and at pos
(rplaca pos (car lst))
(rplaca lst val))
(setq lst (cdr lst)))
res))
;;; *******
;;; ADDRESS______________________________________________________________________
;;; *******
;;; address of objects.
;;; The intention is to only use this for printing.
;;;
#+GCL
(Clines "static object addr_of(x) object x; {return(make_fixnum((int)x));}")
;;(defCfun "object addr_of(x) object x;" 0
;;" Creturn(make_fixnum((int)x));"
;;)
#+GCL
(defentry addr-of (object) (object addr_of))
(defconstant .32bit. #xffffffff)
#-GCL
(declaim (inline addr-of))
#+LUCID
(defun addr-of (x) (logand .32bit. (sys:%pointer x)))
#+CMU
(defun addr-of (x)
(logand .32.bit. (kernel:get-lisp-obj-address x)))
#+Excl
(defun addr-of (x) (logand .32bit. (excl::pointer-to-positive-fixnum x)))
#+CCL
(defun addr-of (x) (logand .32bit. (ccl::%address-of x)))
#+CLISP
(defun addr-of (x) (logand .32bit. (sys::address-of x)))
#+SBCL
(defun addr-of (x) (logand .32bit. (sb-kernel:get-lisp-obj-address x)))
(defun print-addr (x)
(format t "0x~8,'0x" (addr-of x)))
;;; ************
;;; QUERY-INPUT_________________________________________________________________
;;; ************
(defun query-input (&optional (default #\y) (timeout 20)
format-string &rest args)
(clear-input *query-io*)
(when format-string
(fresh-line *query-io*)
(apply #'format *query-io* format-string args)
;; FINISH-OUTPUT needed for CMU and other places which don't handle
;; output streams nicely. This prevents it from continuing and
;; reading the query until the prompt has been printed.
(finish-output *query-io*))
(let ((read-char (read-char-wait timeout *query-io*)))
(cond ((null read-char) (return-from query-input default))
(t (unread-char read-char *query-io*)
(read *query-io*)))))
;;; *************
;;; Y-OR-N-P-WAIT________________________________________________________________
;;; *************
;;; y-or-n-p-wait is like y-or-n-p, but will timeout
;;; after a specified number of seconds
(defun internal-real-time-in-seconds ()
(/ (get-internal-real-time)
internal-time-units-per-second))
(defun read-char-wait (&optional (timeout 20) input-stream &aux char)
(do ((start (internal-real-time-in-seconds)))
((or (setq char (read-char-no-hang input-stream nil)) ;(listen *query-io*)
(< (+ start timeout) (internal-real-time-in-seconds)))
char)))
(defvar *use-timeouts* t
"If T, timeouts in Y-OR-N-P-WAIT are enabled. Otherwise it behaves
like Y-OR-N-P. This is provided for users whose lisps don't handle
read-char-no-hang properly.")
(defvar *clear-input-before-query* t
"If T, y-or-n-p-wait will clear the input before printing the prompt
and asking the user for input.")
;;; y-or-n-p-wait
;;; Y-OR-N-P-WAIT prints the message, if any, and reads characters from
;;; *QUERY-IO* until the user enters y, Y or space as an affirmative, or either
;;; n or N as a negative answer, or the timeout occurs. It asks again if
;;; you enter any other characters.
(defun y-or-n-p-wait (&optional (default #\y) (timeout 20)
format-string &rest args)
(when *clear-input-before-query* (clear-input *query-io*))
(when format-string
(fresh-line *query-io*)
(apply #'format *query-io* format-string args)
;; FINISH-OUTPUT needed for CMU and other places which don't handle
;; output streams nicely. This prevents it from continuing and
;; reading the query until the prompt has been printed.
(finish-output *query-io*))
(loop
(let* ((read-char (if *use-timeouts*
(read-char-wait timeout *query-io*)
(read-char *query-io*)))
(char (or read-char default)))
(declare (type character char))
;; We need to ignore #\newline because otherwise the bugs in
;; clear-input will cause y-or-n-p-wait to print the "Type ..."
;; message every time... *sigh*
;; Anyway, we might want to use this to ignore whitespace once
;; clear-input is fixed.
(unless (find char '(#\tab #\newline #\return))
(when (null read-char)
(format *query-io* "~@[~A~]" default)
(finish-output *query-io*))
(cond ((null char) (return t))
((find char '(#\y #\Y #\space) :test #'char=) (return t))
((find char '(#\n #\N) :test #'char=) (return nil))
(t
(when *clear-input-before-query* (clear-input *query-io*))
(format *query-io* "~%Type \"y\" for yes or \"n\" for no. ")
(when format-string
(fresh-line *query-io*)
(apply #'format *query-io* format-string args))
(finish-output *query-io*)))))))
;;; ********
;;; MULTISET____________________________________________________________________
;;; ********
;;; A multiset is a collection of elements "{e1, ..., en}" of some type, where
;;; the elements need not be distinct. The operations "multiset.equal" is used
;;; to determine if two elements are the same. Two elements are said to be
;;; `distinct' in a multiset if they are not "multiset.equal" to one another.
;;;
;;; IMPLEMENTATION:
;;; an element is represented as a pair of the form `(object . cout)',
;;; where, `object' is the element and `count' is the number of times it
;;; occurs in the multiset (if it occurs at least once in the multiset).
;;; a multiset itself is represented as a list of this pairs.
(defstruct (multiset (:conc-name "MULTISET-")
(:constructor multiset-create (equal-fun elements))
(:copier nil))
(equal-fun #'eq :type function) ; predicate which determines the equality
; of the objects.
(elements nil :type list)) ; list of pair (object . count).
;;; MULTISET-NEW
;;; creates the new empty multiset-
;;;
(defmacro multiset-new (&optional (equal-fun #'eq))
`(multiset-create ,equal-fun nil))
;;; MULTISET-IS-EMPTY m
;;;
(defmacro multiset-is-empty (m)
`(null (multiset-elements ,m)))
;;; MULTISET-INSERT ms e
;;; insert e in ms.
(defmacro multiset-insert (ms e)
(once-only (ms)
`(let* ((elems (multiset-elements ,ms))
(pair (assoc ,e elems :test (multiset-equal-fun ,ms))))
(if pair
(incf (the fixnum (cdr pair)))
(setf (multiset-elements ,ms)
(push (cons e 1) elems))))))
;;; LIST-TO-MULTISET list
;;; returns a new multiset consisting of the elements in list.
;;;
(defmacro list-to-multiset (list &optional (equal-fun #'eq))
` (let ((ms (multiset-new ,equal-fun)))
(declare (type multiset ms))
(dolist (e ,list)
(multiset-insert ms e))
ms))
;;; MULTISET-TO-SET ms
;;; returns a set contains element in ms.
(defmacro multiset-to-set (ms)
`(mapcar #'car (multiset-elements ,ms)))
;;; MULTISET-DELETE ms e
;;; removes one occurrence of e in ms.
;;;
(defmacro multiset-delete (ms e)
(once-only (ms)
`(let* ((elems (multiset-elements ,ms))
(pair (assoc ,e elems :test (multiset-equal-fun ,ms))))
(when pair
(when (zerop (decf (the fixnum (cdr pair))))
(setf (multiset-elements ,ms)
(delete e elems :test (multiset-equal-fun ,ms) :key #'car)))))))
;;; MULTISET-MERGE m1 m2
;;; inserts each elements of m2 into m1. leaves m2 unchanged.
;;; equality is determined with respect to m1.
;;;
(defmacro multiset-merge (m1 m2)
(once-only (m1)
`(let ((m1-elems (multiset-elements ,m1))
(equal-fun (multiset-equal-fun ,m1)))
(dolist (e2 (multiset-elements ,m2))
(let ((pair (assoc (car e2) m1-elems :test equal-fun)))
(if pair
(incf (the fixnum (cdr m1-elems)) (the fixnum (cdr pair)))
(push e2 m1-elems)))))))
;;; MULTISET-INTERSECTION m1 m2
;;; returns a new multiset with all elements that occur in both m1 and m2,
;;; with the number of occurences being the smaller of the two.
;;; leaves m1 and m2 unchanged.
;;;
(defmacro multiset-intersectin (m1 m2)
(once-only (m1)
`(let ((m1-elems (multiset-elements ,m1))
(equal-fun (multiset-equal-fun ,m1))
(new-elems nil))
(dolist (e2 (multiset-elements ,m2))
(let ((pair (assoc (car e2) m1-elems :test equal-fun)))
(when pair
(push (cons (car pair) (min (cdr pair) (cdr e2)))
new-elems))))
(multiset-create equal-fun new-elems))))
;;; MULTISET-DIFF m1 m2
;;; returns the new multiset formed by removing from m1 each elements that
;;; occurs in m2, the number of times it occurs. Thus, the relationship
;;; m1 + m2 == (m1 - m2) + (m1 ^ m2) + (m2 - m1) will hold.
;;;
(defmacro multiset-diff (m1 m2)
(once-only (m1)
`(let ((m1-elems (multiset-elements ,m1))
(equal-fun (multiset-equal-fun ,m1))
(new-elems nil))
(dolist (e2 (multiset-elements ,m2))
(let ((pair (assoc (car e2) m1-elems :test equal-fun)))
(if pair
(let ((count (- (cdr pair) (cdr e2))))
(when (< 0 count)
(push (cons (car pair) count) new-elems)))
(push (cons (car par) (cdr pair)) new-elems))))
(multiset-create equal-fun new-elems))))
;;; MULTISET-COUNT m e
;;; returns the nubmer of occurences of e in m.
;;;
(defmacro multiset-count (m e)
(once-only (m)
`(let ((pair (assoc ,e (multiset-elements ,m) :test (multiset-equal-fun ,m))))
(if pair
(cdr pair)
0))))
;;; ****
;;; TIME________________________________________________________________________
;;; ****
(defun get-time-string (&optional universal-time)
(unless universal-time (setf universal-time (get-universal-time)))
(multiple-value-bind (secs min hour date month year dow)
(decode-universal-time universal-time 0) ; GMT time
(declare (type fixnum dow month))
(format nil "~d ~a ~d ~a ~d:~2,'0d:~2,'0d GMT"
year
(%svref '#(0 "Jan" "Feb" "Mar" "Apr" "May"
"Jun" "Jul" "Aug" "Sep" "Oct"
"Nov" "Dec")
month)
date
(%svref '#("Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun") dow)
hour min secs)
))
;;; elapsed-time-in-seconds
;;;
;;; Returns the time in seconds that has elapsed between Base and Now.
;;; Just subtracts Base from Now to get elapsed time in internal time units,
;;; then divides by the number of internal units per second to get seconds.
(defun elapsed-time-in-seconds (base now)
(declare (type integer base now))
(coerce (/ (- now base) internal-time-units-per-second) 'float))
(defun time-in-seconds (sum)
(declare (type integer sum))
(coerce (/ sum internal-time-units-per-second) 'float))
;;; ****
;;; MISC________________________________________________________________________
;;; ****
(defmacro every2len (fn l1 l2)
(let* ((lmbd (cadr fn))
(args (cadr lmbd))
(bdy (cddr lmbd)))
` (let ((lst1 ,l1) (lst2 ,l2) ,@args)
(loop
(when (null lst1) (return (null lst2)))
(when (null lst2) (return (null lst1)))
(setq ,(car args) (car lst1))
(setq ,(cadr args) (car lst2))
(unless (progn ,@bdy) (return nil))
(setq lst1 (cdr lst1))
(setq lst2 (cdr lst2))
)
)))
(defun list2array (list)
(declare (type list list)
#-GCL (values simple-vector)
)
#-GCL
(make-array (length list) :initial-contents list)
#+GCL
(let ((len (length list)))
(let ((arr (si:make-vector t len nil nil nil 0 nil)) (i 0))
(declare (fixnum i))
(dolist (e list) (si:aset arr i e) (setq i (1+ i)))
arr)))
(defun make-list-1-n (n)
(declare (type fixnum n)
(values list))
(let ((result nil))
(dotimes-fixnum (x n)
(push (+ x 1) result))
(reverse result)))
(defun make-list-1-n-0 (n)
(declare (type fixnum n)
(values list))
(let ((result nil))
(dotimes-fixnum (x n)
(push (+ x 1) result))
(push 0 result)
(reverse result)))
;;;
;;; REMOVEABLE ASSOCIATION TABLE
;;;
(defmacro find-in-assoc-table (table key &optional (test '#'equal))
`(cdr (assoc ,key ,table :test ,test)))
(defmacro get-entry-in-assoc-table (table key &optional (test '#'equal))
`(assoc ,key ,table :test ,test))
(defmacro delete-entry-from-assoc-table (table key &optional (test '#'equal))
` (let ((entry (assoc ,key ,table :test ,test)))
(when entry
(setq ,table (delete entry ,table :test #'eq)))))
(defmacro delete-object-from-assoc-table (table object &optional (test '#'eq))
` (let ((entry (rassoc ,object ,table :test ,test)))
(when entry
(setq ,table (delete entry ,table :test #'eq)))))
(defmacro add-to-assoc-table (table key value &optional (test '#'equal))
(once-only (table key value)
` (let ((entry (get-entry-in-assoc-table ,table ,key ,test)))
(if entry
(setf (cdr entry) ,value)
(prog1
,value
(push (cons ,key ,value) ,table))))))
(defmacro object-is-in-assoc-table? (table object &optional (test '#'eq))
`(rassoc ,object ,table :test ,test))
;;; *******************
;;; FIXNUM COMPUTATIONS
;;; *******************
(defmacro test-and (a b)
`(not (zerop (logand ,a ,b))))
(defmacro make-and (*a *b)
`(logand ,*a ,*b))
(defmacro make-or (*a *b)
`(logior ,*a ,*b))
(defmacro make-xor (*a *b)
`(logxor ,*a ,*b))
(defmacro expt2 (x)
`(expt 2 (the fixnum ,x)))
;;; EOF
|