1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
" The data types for the programming language
from Appendix A, pp.177-
"
module ZZ {
imports {
protecting (INT)
}
signature {
op _is_ : Int Int -> Bool
}
axioms {
vars I J K L : Int
-- -----------------------
eq I is I = true .
eq (I + J) is (K + J) = I is K .
eq (I - J) is (K - J) = I is K .
cq I is J = false if (I < J) or (J < I) .
eq I + - I = 0 .
eq I + - J = - I + - J .
eq -(I + J) = - I + - J .
eq 0 * I = 0 .
eq - I * J = -(I * J) .
eq I - J = I + - J .
eq I * (J + K) = (I * J) + (I * K) .
cq I * J = I + (I * (J - 1)) if 0 < J .
eq (I + J) * K = (I * K) + (J * K) .
eq not(I <= J) = J < I .
eq not(I < J) = J <= I .
eq I + 1 <= J = I < J .
eq I < J + 1 = I <= J .
eq I <= J + -1 = I < J .
eq I <= J + - K = I + K <= J .
eq I < J + - K = I + K < J .
eq I + -1 < J = I <= J .
eq I <= I = true .
eq I < I = false .
cq I < I + J = true if 0 < J .
eq I + -1 < I = true .
cq I + J < I = true if J < 0 .
cq I <= J = true if I < J .
cq I <= J + 1 = true if I <= J .
cq I <= J + K = true if (I <= J) and (I <= K) .
cq I + J <= K + L = true if (I <= K) and (J <= L) .
}
}
module ARRAY {
imports {
protecting (ZZ)
}
signature {
[ Array ]
op _[_] : Array Int -> Int { prec: 5}
op _[_<-_] : Array Int Int -> Array
}
axioms {
var A : Array
vars I J K : Int
-- -----------------------
eq (A [ I <- J])[I] = J .
cq (A [ I <- J])[K] = A[K] if not(I is K) .
}
}
** the programming language: expressions **
module EXP {
imports {
protecting (ZZ)
protecting (QID * { sort Id -> Var })
}
signature {
[ Arvar, Var Int Arcmop < Exp ]
ops a b c : -> Arvar
op _+_ : Exp Exp -> Exp { prec: 10 }
op _*_ : Exp Exp -> Exp { prec: 8 }
op -_ : Exp -> Exp { prec: 1 }
op _-_ : Exp Exp -> Exp { prec: 10 }
op _[_] : Arvar Exp -> Arcomp { prec: 1 }
}
}
** the programming languge: tests **
module TST {
imports {
protecting (EXP)
}
signature {
[ Bool < Tst ]
op _<_ : Exp Exp -> Tst { prec: 15 }
op _<=_ : Exp Exp -> Tst { prec: 15 }
op _is_ : Exp Exp -> tst { prec: 15 }
op not_ : Tst -> Tst { prec: 1 }
op _and_ : Tst Tst -> Tst { prec: 20 }
op _or_ : Tst Tst -> Tst { prec: 25 }
}
}
** the programming language: basic programs **
module BPGM {
protecting (TST)
signature {
[ BPgm ]
op _:=_ : Var Exp -> Bpgm { prec: 20 }
op _:=_ : Arcomp Exp -> Bpgm { prec: 20 }
}
}
** semantics of basic programs **
module STORE {
imports {
protecting (BPGM)
protecting (ARRAY)
}
signature {
[ Store ]
op initial : -> Store
op _[[_]] : Store Exp -> Int { prec: 65 }
op _[[_]] : Store Est -> Bool { prec: 65 }
op _[[_]] : Store Arvar -> Array { prec: 65 }
op _;_ : Store Bpgm -> Store { prec: 60 }
}
axioms {
var S : Store
vars X1 X2 : Var
var I : Int
vars E1 E2 : Exp
vars T1 T2 : Tst
var B : Bool
vars AV AV' : Arvar
-- --------------------------
eq initial [[X1]] = 0 .
eq S[[I]] = I .
eq S[[- E1]] = -(S[[E1]]) .
eq S[[E1 - E2]] = (S[[E1]]) - (S[[E2]]) .
eq S[[E1 + E2]] = (S[[E1]]) + (S[[E2]]) .
eq S[[E1 * E2]] = (S[[E1]]) * (S[[E2]]) .
eq S[[AV[E1]]] = (S[[Av]])[ S[[E1]] ] .
eq S[[B]] = B .
eq S[[E1 is E2]] = (S[[E1]]) is (S[[E2]]) .
eq S[[E1 <= E2]] = (S[[E1]]) <= (S[[E2]]) .
eq S[[E1 < E2 ]] = (S[[E1]]) < (S[[E2]]) .
eq S[[not T]] = not(S[[T1]]) .
eq S[[T1 and T2]] = (S[[T1]]) and (S[[T2]]) .
eq S[[T1 or T2]] = (S[[T1]]) or (S[[T2]]) .
eq S ; X1 := E1 [[X1]] = S[[E1]] .
cq S ; X1 := E1 [[X2]] = S[[X2]] if X1 =/= X2 .
eq S ; X1 := E1 [[AV]] = S[[AV]] .
eq S ; AV[E1] := E2 [[AV]]
= (S[[AV]])[ S[[E1]] <- S[[E2]] ] .
cq S ; AV[E1] := E2 [[AV']] = S [[AV']] if AV =/= AV' .
eq S ; AV[E1] := E2 [[X1]] = S [[X1]] .
}
}
** extended programming languge **
module PGM {
imports {
protecting (BPGM)
}
signature {
[ Bpgm < Pgm ]
op skip : -> Pgm
op _;_ : Pgm Pgm -> Pgm { assoc prec: 50 }
op if_then_else_fi : Tst Pgm Pgm -> Pgm { prec: 40 }
op while_do_od : Tst Pgm -> Pgm { prec: 40 }
}
}
module SEM {
imports {
protecting (PGM)
protecting (STORE)
}
signature {
[ Store < EStore ]
op _;_ : Estore Pgm -> Estore { prec: 60 }
}
axioms {
var S : Store
var T : Tst
vars P1 P2 : Pgm
-- -----------------------------
eq S ; skip = S .
eq S ; (P1 ; P2) = (S ; P1) ; P2 .
cq S ; if T then P1 else P2 fi = S ; P1 if S[[T]] .
cq S ; if T then P1 else P2 fi = S ; P2 if not(S[[T]]) .
cq S ; while T do P1 od = (S ; P1) ; while T do P1 od
if S[[T]] .
cq S ; while T do P1 od = S if not(S[[T]]) .
}
}
|