File: bset.mod

package info (click to toggle)
cafeobj 1.6.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 19,900 kB
  • sloc: lisp: 85,055; sh: 659; makefile: 437; perl: 147
file content (178 lines) | stat: -rw-r--r-- 4,498 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
-- FILE: /home/diacon/LANG/Cafe/prog/bset.mod
-- CONTENTS: behavioural specification of a set object featuring
--           use of coherence operations, 
--           simplicity of behavioural proofs, and
--           object refinement
-- AUTHOR: Razvan Diaconescu
-- DIFFICULTY: ***

mod* BASICSETS (X :: TRIV) {
  -- protecting(PROPC)

  *[ Set ]*

  op empty : -> Set 
  op add   : Elt Set -> Set    -- method {coherent}
  bop _in_  : Elt Set -> Bool  -- attribute

  vars E E' : Elt
  var S : Set 

  eq E in add(E', S) = (E == E') or (E in S) .
  eq E in empty = false .
}

** proof score for  behavioural coherence of add(_)
open BASICSETS .
  ops e e' :  -> Elt .
  ops s s' :  -> Set .
** hypothesis
  beq s = s' .
** behavioural coherence of add(_) by case analysis
red e  in add(e, s)  == e  in add(e, s') .
red e' in add(e, s)  == e' in add(e, s') .
close

mod* BASICSETS+ { protecting (BASICSETS)
  op add   : Elt Set -> Set  {coherent}
}

mod* SETS {
  protecting(BASICSETS+)
  
  op _U_ : Set Set -> Set  -- {coherent}
  op _&_ : Set Set -> Set  -- {coherent}
  op not : Set -> Set      -- {coherent}

  var E : Elt
  vars S1 S2 : Set
    
  eq E in S1 U S2  = (E in S1)  or (E in S2) .
  eq E in S1 & S2  = (E in S1) and (E in S2) .
  eq E in not(S1)  = not (E in S1) .
}

** proof score for beh coherence of _U_, _&_, and not(_)
open SETS .
  ops s1 s2 s1' s2' : -> Set .
  op e : -> Elt .
** by theorem of constants
  ceq S1 =*= S2 = true if (e in S1) == (e in S2) .
** hypothesis
  beq s1 = s1' .
  beq s2 = s2' .
** beh coherence of _U_
red (s1 U s2) =*= (s1' U s2') .
** beh coherence of _&_
red (s1 & s2) =*= (s1' & s2') .
** beh coherence of not_
red (not(s1)) =*= (not(s1')) .
close

mod* SETS+ { protecting (SETS)
  op _U_ : Set Set -> Set   {coherent}
  op _&_ : Set Set -> Set   {coherent}
  op not : Set -> Set       {coherent}
}

** *************************** ***
**> Some behavioral properties ***
** *************************** ***
open SETS+ .
  op e : -> Elt .
  ops s1 s2 s3 : -> Set .
** by theorem of constants
  ceq S1:Set =*= S2:Set = true if (e in S1) == (e in S2) .
**> commutativity of _U_
red (s1 U s2) =*= (s2 U s1) .
**> associativity of _U_
red (s1 U (s2 U s3)) =*= ((s1 U s2) U s3) .
**> idempotency of _U_
red (s1 U s1) =*= s1 .
**> empty is the unity of _U_
red (empty U s1) =*= s1 .
**> commutativity of _&_
red (s1 & s2) =*= (s2 & s1) .
**> associativity of _&_
red (s1 & (s2 & s3)) =*= ((s1 & s2) & s3) .
**> idempotency of _&_
red (s1 & s1) =*= s1 .
**> empty & S is empty
red (empty & s1) =*= empty .
**> distributivity
red (s1 & (s2 U s3)) =*= ((s1 & s2) U (s1 & s3)) .
red (s1 U (s2 & s3)) =*= ((s1 U s2) & (s1 U s3)) .
**> de Morgan laws
red (not(s1 U s2)) =*= (not(s1) & not(s2)) . 
red (not(s1 & s2)) =*= (not(s1) U not(s2)) . 
**> double negation
red (not(not(s1))) =*= s1 .
close

-- ==============================================================
-- REFINEMENT of the BASIC-SET object by LIST object
-- ==============================================================

mod! TRIV+ (X :: TRIV) {
  op err :  -> ?Elt 
}

-- the list object
mod* LIST  {
  protecting (TRIV+)

  *[ List ]*

  op nil : -> List   
  op cons : Elt List -> List   {coherent}  -- method
                                           -- provable from the rest of spec 
  bop car : List -> ?Elt       -- attribute
  bop cdr : List -> List       -- method
    
  vars E E' : Elt
  var L : List

  eq car(nil) = err .
  eq car(cons(E, L)) = E .
  beq cdr(nil) = nil .
  beq cdr(cons(E, L)) = L .
}

-- LIST refines BASICSETS+ via the morphism
-- add    |--> cons
-- E in L |--> (E == car(L)) or-else (car(L) =/= err  and-also  E in cdr(L))

mod* LIST' {
  protecting (LIST)
-- a derived attribute   
  op _in_ : Elt List -> Bool  {coherent}
                              -- coherence provable from the rest of spec 
  vars E E' : Elt
  var L : List

  eq E in L = (E == car(L)) or-else (car(L) =/= err  and-also  E in cdr(L)) .
}

open LIST'(NAT) .
red 1 in cons(2,cons(3,cons(4,nil))) .
red 1 in cdr(cons(1,cons(2,cons(3,cons(4,nil))))) .
red 1 in cdr(cons(1,cons(2,cons(3,cons(4,cons(1,nil)))))) .
close

-- proof that LIST refines BASICSETS
open LIST' .
  ops e e1 e2 : -> Elt .
  op l : -> List .
-- basic cases 
  eq e1 in l = true .
  eq e2 in l = false .
-- case analysis
red e  in nil       == false .
red e1 in cons(e,l) == true  .
red e2 in cons(e,l) == false .
red e  in cons(e,l) == true  .
close 
--
eof
--
$Id: bset.mod,v 1.2 2007-02-05 04:44:54 sawada Exp $