1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
mod! BARE-NAT {
[ NzNat Zero < Nat ]
op 0 : -> Zero
op s : Nat -> NzNat
}
mod! SIMPLE-NAT {
protecting (BARE-NAT)
op _+_ : Nat Nat -> Nat
eq N:Nat + s(M:Nat) = s(N + M) .
eq N:Nat + 0 = N . eq 0 + N:Nat = N .
}
mod! TIMES-NAT {
protecting (SIMPLE-NAT)
op _*_ : Nat Nat -> Nat
vars M N : Nat
eq 0 * N = 0 .
eq N * 0 = 0 .
eq N * s(M) = (N * M) + N .
}
-- --------------------------------------------
-- MONOIDS
-- --------------------------------------------
mod* MON {
[ Elt ]
op null : -> Elt
op _;_ : Elt Elt -> Elt {assoc idr: null}
}
mod* CMON {
protecting(MON)
op _;_ : Elt Elt -> Elt {comm}
}
view bare-nat from TRIV to BARE-NAT { sort Elt -> Nat }
view plus from MON to SIMPLE-NAT {
sort Elt -> Nat,
op _;_ -> _+_,
op null -> 0
}
view times from MON to TIMES-NAT {
sort Elt -> Nat,
op _;_ -> _*_,
op null -> s(0)
}
view dual from MON to MON {
op X:Elt ; Y:Elt -> Y:Elt ; X:Elt
}
mod* MON* (Y :: TRIV) {
op _;_ : Elt Elt -> Elt {assoc}
op null : -> Elt
eq m:Elt ; null = m . eq null ; m:Elt = m .
}
view dual* from MON* to MON* {
op X:Elt ; Y:Elt -> Y:Elt ; X:Elt
}
view plus* from MON* to SIMPLE-NAT {
sort Elt -> Nat,
op _;_ -> _+_,
op null -> 0
}
view times* from MON* to TIMES-NAT {
sort Elt -> Nat,
op _;_ -> _*_,
op null -> s(0)
}
view bnat+ from MON*(bare-nat) to SIMPLE-NAT {
op _;_ -> _+_,
op null -> 0
}
-- -----------------------------------------------------------------
-- MONOIDS with POWERS
-- -----------------------------------------------------------------
mod* MON-POW (POWER :: MON, M :: MON)
{
op _^_ : Elt.M Elt.POWER -> Elt.M
vars m m' : Elt.M
vars p p' : Elt.POWER
eq (m ; m')^ p = (m ^ p) ; (m' ^ p) .
eq m ^ (p ; p') = (m ^ p) ; (m ^ p') .
eq m ^ null = null .
}
open MON-POW(plus,plus) * { op _^_ -> _*_ } .
ops m m' n n' : -> Nat .
-- LEMMA:
op _+_ : Nat Nat -> Nat { assoc }
-- the following should be true
red (m + m') * (n + n') == (m * n) + (m * n') + (m' * n) + (m' * n') .
close
view ^as* from MON-POW(plus,plus) to TIMES-NAT {
op _^_ -> _*_
}
mod* NAT^ (M :: MON-POW(plus,plus)) { }
open NAT^(^as*) .
red s(s(s(0))) * s(s(s(s(0)))) . -- it should be 12
close
mod* MON-POW-NAT {
protecting(MON-POW(POWER <= plus))
eq m:Elt.M ^ s(0) = m .
}
open MON-POW-NAT .
ops m m' : -> Elt.M .
ops n n' : -> Nat .
-- this should be true
red (m ; m') ^ (n + n') == (m ^ n) ; (m ^ n') ; (m' ^ n) ; (m' ^ n') .
close
-- this should be another version of TIMES-NAT
-- by getting the multiplication as power of the sum!
mod* NAT-TIMES {
protecting(MON-POW-NAT(M <= plus) * { op _^_ -> _*_ })
}
open NAT-TIMES .
-- LEMMA:
eq M:Nat * s(N:Nat) = (M * N) + M .
red s(s(s(0))) * s(s(s(s(0)))) . -- it should be 12
close
view nat-times from MON to NAT-TIMES {
sort Elt -> Nat,
op null -> s(0),
op _;_ -> _*_
}
mod* NAT-POW {
protecting(MON-POW-NAT(M <= nat-times))
}
open NAT-POW .
-- LEMMA:
eq M:Nat * s(N:Nat) = (M * N) + M . -- (1)
-- LEMMA:
eq M:Nat ^ s(N:Nat) = (M ^ N) * M . -- (2)
red s(s(s(0))) ^ s(s(s(s(0)))) . -- it should be 81
close
-- ----------------------------------------------
-- SEMIRINGS
-- ----------------------------------------------
-- commutative monoids with powers
mod* CMON-POW (POWER :: MON, M :: CMON)
{
op _^_ : Elt.M Elt.POWER -> Elt.M
vars m m' : Elt.M
vars p p' : Elt.POWER
eq (m ; m')^ p = (m ^ p) ; (m' ^ p) .
eq m ^ (p ; p') = (m ^ p) ; (m ^ p') .
eq m ^ null = null .
}
module* SRNG
{
protecting (CMON-POW(MON, CMON) *
{ sort Elt -> Srng,
op (_;_) -> _+_,
op null -> 0,
op _^_ -> _*_ }
)
}
open SRNG .
ops m n m' n' : -> Srng .
-- the following should be true
red (m + n) * (m' + n') == (n * n') + (n * m') + (m * n') + (m * m') .
close
-- ----------------------------------------------------------------
-- full parameterised version of MONOIDS with POWERS
-- ----------------------------------------------------------------
mod* MON*-POW (POWER :: MON*, M :: MON*)
{
op _^_ : Elt.M Elt.POWER -> Elt.M
vars m m' : Elt.M
vars p p' : Elt.POWER
eq (m ; m')^ p = (m ^ p) ; (m' ^ p) .
eq m ^ (p ; p') = (m ^ p) ; (m ^ p') .
eq m ^ null = null .
}
** describe MON*-POW(POWER <= plus*, M <= dual*)
open MON*-POW(plus*,plus*) * { op _^_ -> _*_ } .
ops m m' n n' : -> Nat .
** we need associativity and commutativity of _+_ here
op _+_ : Nat Nat -> Nat { assoc comm }
-- the following should be true
red (m + m') * (n + n') == (m * n) + (m * n') + (m' * n) + (m' * n') .
close
-- ------------------------------------------------------------
-- ------------------------------------------------------------
--> proof that *dual* is indeed a specification morphism
mod* MONOID (X :: MON) { }
open MONOID(dual) .
ops x y z : -> Elt .
op _|_ : Elt Elt -> Elt .
eq X:Elt | Y:Elt = Y ; X .
red (x | y) | z == x | (y | z) .
red x | null == x .
red null | x == x .
close
view star from MON to INT {
sort Elt -> Int,
op null -> 0,
op X:Elt ; Y:Elt -> X:Int + Y:Int - X * Y
}
--> proof that *star* is indeed a specification morphism
open MONOID(star) .
ops x y z : -> Int .
vars X Y Z : Int .
op _;_ : Int Int -> Int .
eq X ; Y = X + Y - X * Y .
-- lemmas:
op _+_ : Int Int -> Int {assoc comm idr: 0}
op _*_ : Int Int -> Int {assoc comm idr: 1}
eq X + 0 = X .
eq X * 0 = 0 .
eq X * (Y + Z) = (X * Y) + (X * Z) .
eq X * (- Y) = - (X * Y) .
eq - - X = X .
eq - (X + Y) = (- X) + (- Y) .
-- proof
red (x ; y) ; z == x ; (y ; z) .
red x ; 0 == x .
red 0 ; x == x .
close
--
eof
--
$Id: monoid.mod,v 1.1.1.1 2003-06-19 08:30:10 sawada Exp $
|