1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
|
## Ctrl-D ## {#ctrld}
Terminates the input and exit from the interpreter.
## `! <command>` ## {#commandexec}
On Unix only, forks a shell and executes the given `<command>`.
## `#define <pattern> := <term> .` ## {#sharp-define}
Defines <pattern> to be <term>, that is, when <pattern>
appers in term, it is expanded to <term> and then parsed.
## `**`, `**>` ## {#starstar}
Starts a comment which extends to the end of the line.
With the additional `>` the comment is displayed while
evaluated by the interpreter.
Related: [comments](#comments), [`--`](#starstar)
## `--`, `-->` ## {#dashdash}
Starts a comment which extends to the end of the line.
With the additional `>` the comment is displayed while
evaluated by the interpreter.
Related: [comments](#comments), [`**`](#starstar)
## `.` ## {#dotsep}
Input separator
## `=` ## {#axeq}
The syntax element `=` introduces an axiom of the equational theory,
and is different from `==` which specifies an equality based on
rewriting.
Related: [`eq`](#eq), [`==`](#equality)
## `=(n)=>`, `=(n,m)=>`, `=()=>` ## {#searchpredsymb}
See [`search predicates`](#searchpredicate)
## `=*=` ## {#bequality}
The predicate for behavioral equivalence, written `=*=`, is a binary
operator defined on each hidden sort.
## `=/=` ## {#notequal}
Negation of the predicate `==`.
Related: [`==`](#equality)
## `==` ## {#equality}
The predicate `==` is a binary operator defined for each visible sort
and is defined in terms of evaluation. That is, for ground terms `t`
and `t'` of the same sort, `t == t'` evaluates to `true` iff terms
reduce to a common term. This is different from the equational `=`
which specifies the equality of the theory.
## `==>` ## {#transrel}
This binary predicate is defined on each visible sort, and defines the
transition relation, which is reflexive, transitive, and closed under
operator application. It expresses the fact that two states (terms)
are connected via transitions.
Related: [search predicates](#searchpredicate), [`trans`](#trans)
## `? [<term>]` ## {#help}
Without any argument, shows the brief guide of online help system.
With argument gives the reference manual description of `term`.
In addition to this, many commands allow for passing `?` as argument
to obtain further help.
In case examples are provided for the `<term>`, they can be displayed
using `?ex <term>`. In this case the normal help output will also contain
an informational message that examples are available.
When called as ?? both documentation and examples are shown.
## `?apropos <term> [<term> ...]` ## {#apropos}
Searches all available online docs for the terms passed.
Terms are separated by white space. Each term is tested independently
and all terms have to match. Testing is done either by simple sub-string
search, or, if the term looks like a regular expression (Perl style),
by regex matching. In case a regex-like term cannot be parsed as regular
expression, it is used in normal sub-string search mode.
Note: Fancy quoting with single and double quotes might lead to unexpected problems.
### Example ###
`````
CafeOBJ> ?ap prec oper
`````
will search for all entries that contain both `prec` and `oper` as
sub-strings. Matching is done as simple sub-string match.
`````
CafeOBJ> ?ap foo att[er]
`````
will search for entries that contain the string `foo` as well as
either the string `atte` or `attr`.
## `?com [ <term> ]` ## {#help-commands}
List commands or declarations categorized by the key <term>.
<term> is one of 'decl', 'module', 'parse', 'rewrite',
'inspect', 'switch', 'proof', 'system', 'inspect', 'library', 'help', 'io' or 'misc'.
If <term> is omitted, the list of available <term> will be printed.
## `[` ## {#sortsymbol}
Starts a sort declaration. See [sort declaration](#sort) for details.
## `accept =*= proof` switch ## {#switch-accept}
accept system's automatic proof of congruency of `=*=`
## `all axioms` switch ## {#switch-all-axioms}
Controls whether axioms from included modules are shown
during a `show` invocation.
Related: [`show`](#show)
## `always memo` switch ## {#switch-always-memo}
Turns on memorization of computation also for operators without
the [`memo`](#opattr) operator attribute.
Related: [operator attributes](#opattr), [`memo`](#switch-memo)
## `:apply (<tactic> ...) [to <goal-name>]` ## {#citp-apply}
Apply the list of tactics given within parenthesis to either
the current goal, or the goal given as `<goal-name>`.
Related: [`citp`](#citp)
## `apply <action> [ <subst> ] <range> <selection>` ## {#apply}
Applies one of the following actions `reduce`, `exec`, `print`, or a
rewrite rule to the term in focus.
`reduce`, `exec`, `print`
~ the operation acts on the (sub)term specified by `<range>` and
`<selection>`.
rewrite rule
~ in this case a rewrite rule spec has to be given in the following
form:
`[+|-][<mod_name>].<rule-id>`
where `<mod_name>` is the name of a module, and `<rule-id>` either
a number n - in which case the n. equation in the current module
is used, or the label of an equation. If the `<mod_name>` is not
given, the equations of the current module are considered. If the
leading `+` or no leading character is given, the equation is
applied left-to-right, which with a leading `-` the equation is
applied right-to-left.
The `<subst>` is of the form
`with { <var_name> = <term> } +,`
and is used when applying a rewrite rule. In this case the variables
in the rule are bound to the given term.
`<range>` is either `within` or `at`. In the former case the action is
applied at or inside the (sub)term specified by the following
selection. In the later case it means exactly at the (sub)term.
Finally, the `<selection>` is an expression
`<selector> { of <selector> } *`
where each `<selector>` is one of
`top`, `term`
~ Selects the whole term
`subterm`
~ Selects the pre-chosen subterm (see [`choose`](#choose))
`( <number_list> )`
~ A list of numbers separated by blanks as in `(2 1)` indicates a
subterm by tree search. `(2 1)` means the first argument of the
second argument.
`[ <number1> .. <number2> ]`
~ This selector can only be used with associative operators. It
indicates a subterm in a flattened structure and selects the
subterm between and including the two numbers given. `[n .. n]`
can be abbreviated to `[n]`.
Example: If the term is `a * b * c * d * e`, then the
expression `[2 .. 4]` selects the subterm `b * c * d`.
`{ <number_set> }`
~ This selector can only be used with associative and commutative
operators. It indicates a subterm in a multiset structure obtained
from selecting the subterms at position given by the numbers.
Example: If the operator `_*_` is declared as associative and
commutative, and the current term is `b * c * d * c * e`, then
then the expression `{2, 4, 5}` selects the subterm `c * c * e`.
Related: [`start`](#start), [`choose`](#choose)
## `:auto` ## {#citp-auto}
Applies the following set of tactics: `(SI CA TC IP RD)`.
Related: [`citp`](#citp)
## `auto context` switch ## {#switch-auto-context}
Possible values: `on` or `off`, default is `off`.
If this switch is `on`, the context will automatically switch to
the most recent module, i.e., defining a module or inspecting
a module's content will switch the current module.
## `autoload <module-name> <file-name>` ## {#autoload}
When evaluating a <module-name> and found that
it is not yet declared, the system read in <file-name> then
retries the evaluation.
Related: [`no autoload`](#no-autoload)
## `ax [ <label-exp> ] <term> = <term>` . ## {#ax}
(pignose)
## `axioms { <decls> }` ## {#axioms}
Block enclosing declarations of variables, equations, and
transitions.
Other statements are not allowed within the `axioms` block.
Optional structuring of the statements in a module.
Related: [`trans`](#trans), [`eq`](#eq), [`var`](#var), [`imports`](#imports), [`signature`](#signature)
## `:backward equation|rule` ## {#citp-backward}
Like [`:equation`](#citp-equation) and [`:rule`](#citp-rule), but exchange the left and right side.
Related: [`:rule`](#citp-rule), [`:equation`](#citp-equation), [`:cp`](#citp-cp), [`citp`](#citp)
## `bax [ <label-exp> ] <term> = <term>` . ## {#bax}
(pignose)
## `bceq [ <label-exp> ] <term> = <term> if <boolterm> .` ## {#bceq}
Defines a behavioral conditional equation. For details see [`ceq`](#ceq).
Related: [`beq`](#beq), [`ceq`](#ceq), [`eq`](#eq)
## `bcrule [ <label-exp> ] <term> => <term> if <term> .` ## {#bcrule}
Synonym of [`bctrans`](#bctrans)
Related: [`bctrans`](#bctrans)
## `bctrans [ <label-exp> ] <term> => <term> if <bool> .` ## {#bctrans}
Defines a behavioral conditional transition.
For details see [`ctrans`](#ctrans).
Related: [`btrans`](#btrans), [`ctrans`](#ctrans), [`trans`](#trans)
## `beq [ <label-exp> ] <term> = <term> .` ## {#beq}
Defines a behavioral equation. For details see [`eq`](#eq).
Related: [`bceq`](#bceq), [`ceq`](#ceq), [`eq`](#eq)
## `bgoal <term> .` ## {#bgoal}
(pignose)
## `bgrind [in <module-name> :] <boolean-term> .` ## {#bgrind}
Print given boolean term in 'grind'ed manner after computes its xor-and normal form.
## `:bgrind [in <goal-name> :] <boolean-term> .` ## {#citp-bgrind}
Used diring [CITP](#citp) proofs instead of [`bgrind`](#bgrind)
## `{bguess | :bguess} {imply|and|or} [ with <predicate name> ]` ## {#bguess}
Try to find true/false assignments which satisfies the Bool term
specified by 'binspect' or ':binspect'.
## `binspect [in <module-name> :] <boolean-term> .` ## {#binspect}
Start an inspection of a Boolean term, that is, and abstracted
form of the Boolean term is constructed. The abstracted term is shown (like calling [`bshow`](#bshow).
### Example ###
~~~~~
CafeOBJ> module BTE { [S]
preds p1 p2 p3 p4 p5 p6 p7 : S
ops a b c : -> S .
}
CafeOBJ> binspect in BTE : (p1(X:S) or p2(X)) and p3(Y:S) or (p4(Y) and p1(Y)) .
...
--> ((p4(Y:S) and p1(Y)) xor ((p3(Y) and p1(X:S)) xor ((p2(X) and (p3(Y) and p1(X))) xor ((p3(Y) and p2(X)) xor ((p3(Y) and (p2(X) and (p4(Y) and p1(Y)))) xor ((p3(Y) and (p2(X) and (p1(X) and (p1(Y) and p4(Y))))) xor (p1(X) and (p3(Y) and (p1(Y) and p4(Y))))))))))
...
~~~~~
## `:binspect [in <goal-name> :] <boolean-term> .` ## {#citp-binspect}
Used during [CITP](#citp) proofs instead of [`binspect`](#binspect)
## `bop <op-spec> : <sorts> -> <sort>` ## {#bop}
Defines a behavioral operator by its domain, co-domain, and the term
construct. `<sorts>` is a space separated list of sort names containing
*exactly* one hidden sort. `<sort>` is a single sort name.
For `<op-spec>` see the explanations of [`op`](#op).
Related: [`op`](#op)
## `bpred <op-spec> : <sorts>` ## {#bpred}
Short hand for `op <op-spec> : <sorts> -> Bool` defining a
behavioral predicate.
Related: [`pred`](#pred), [`bop`](#bop), [`op`](#op)
## `breduce [ in <mod-exp> : ] <term> .` ## {#breduce}
Reduce the given term in the given module, if `<mod-exp>` is given,
otherwise in the current module.
For `breduce` equations, possibly conditional, possibly behavioral, are taken
into account for reduction.
Related: [`reduce`](#reduce), [`execute`](#execute)
## `{bresolve | :bresolve} [<limit>] [all]` ## {#bresolve}
Computes all possible variable assignments that render an abstracted
term `true`. The variant with leading colon is for usage during a [CITP](#citp) proof.
If an optional argument 'all' is specified, all solutions will be searched.
Optional <limit> specifies maximal number of variable combination, i.e.
if there are 3 variables v1, v2, and v3, and <limit> is 2,
the following cases are examined:
(1) v1 : true/false
(2) v2 : true/false
(3) v3 : true/false
(4) v1/v2 : combinations of true/false of two variables
(5) v1/v3 : combinations of true/false of two variables
(6) v2/v3 : combinations of true/false of two variables
### Example ###
~~~~~
CafeOBJ> bresolve 2 all
** (1) The following assignment(s) makes the term to be 'true'.
[1] { P-3:Bool |-> true }
where
p-3 = P4(Y:S)
[2] { P-4:Bool |-> true }
where
p-4 = P1(X:S)
** (2) The following assignment(s) makes the term to be 'true'.
[1] { P-1:Bool |-> true, P-2:Bool |-> true }
where
p-1 = P3(Y:S)
p-2 = P2(X:S)
...
~~~~~
## `brule [ <label-exp> ] <term> => <term> .` ## {#brule}
Synonym of [`btrans`](#btrans).
Related: [`btrans`](#btrans)
## `{bshow | :bshow} [{ tree | grind }]` ## {#bshow}
Shows the abstracted Boolean term computed by [`binspect`](#binspect).
If the argument `tree` is given, prints out a the abstracted term in tree form.
The variant with leading colon is for usage during a [CITP](#citp) proof.
### Example ###
~~~~~
CafeOBJ> bshow
((P-1:Bool and (P-2:Bool and (P-3:Bool and P-4:Bool))) xor ((P-1 and (P-2 and (P-4 and (P-5:Bool and P-3)))) xor ((P-2 and (P-1 and (P-5 and P-3))) xor ((P-5 and P-3) xor ((P-4 and (P-3 and P-5)) xor ((P-4 and P-3) xor (P-2 and P-1)))))))
where
P-1:Bool |-> p4(Y:S)
P-2:Bool |-> p1(Y:S)
P-3:Bool |-> p3(Y:S)
P-4:Bool |-> p1(X:S)
P-5:Bool |-> p2(X:S)
~~~~~
## `bsort token-predicate creater printer term-predicate` ## {#bsort}
Defines a built-in sort. Internal use only.
## `btrans [ <label-exp> ] <term> => <term> .` ## {#btrans}
Defines a behavioral transition. For details see [`trans`](#trans).
Related: [`bctrans`](#bctrans), [`ctrans`](#ctrans), [`trans`](#trans)
## `cbred [ in <mod-exp> :] <term> .` ## {#cbred}
circular coinductive reduction: see
_Goguen, Lin, Rosu: Circular Coinductive Rewriting_
(Proceedings of Automated Software Engineering 2000) for details.
## `cd <dirname>` ## {#cd}
Change the current working directory, like the Unix counterpart.
The argument is necessary. No kind of expansion or substitution is done.
Related: [`ls`](#ls), [`pwd`](#pwd)
## `ceq [ <label-exp> ] <term> = <term> if <boolterm> .` ## {#ceq}
Defines a conditional equation. Spaces around the `if` are obligatory.
`<boolterm>` needs to be a Boolean term. For other requirements
see [`eq`](#eq).
Related: [`bceq`](#bceq), [`beq`](#beq), [`eq`](#eq)
## `check <options>` ## {#check}
This command allows for checking of certain properties of modules and
operators.
`check regularity <mod_exp>`
~ Checks whether the module given by the module expression
`<mod_exp>` is regular.
`check compatibility <mod_exp>`
~ Checks whether term rewriting system of the module given by the
module expression `<mod_exp>` is compatible, i.e., every
application of every rewrite rule to every well-formed term
results in a well-formed term. (This is not necessarily the case
in order-sorted rewriting!)
`check laziness <op_name>`
~ Checks whether the given operator can be evaluated lazily. If not
`<op_name>` is given, all operators of the current module are
checked.
Related: [`regularize`](#regularize)
## `check <something>` switch ## {#switch-check}
These switches turn on automatic checking of certain properties:
`check coherency`
~ check whether transitions and equations are coherent
`check compatibility`
~ see the [`check`](#check) command
`check import`
~ check conflicting importing mode of submodules
`check regularity`
~ see the [`check`](#check) command
`check sensible`
~ check whether a signature is sensible
## `choose <selection>` ## {#choose}
Chooses a subterm by the given `<selection>`. See [`apply`](#apply)
for details on `<selection>`.
Related: [`strat` in operator attributes](#opattr), [`start`](#start), [`apply`](#apply)
## CITP ## {#citp}
Constructor Based Induction Theorem Prover
The sub-system provides a certain level of automatization for theorem proving.
Please see the accompanying manual for CITP for details.
Related: [`:attr`](#target_not_found), [`:reset`](#citp-reset), [`:embed`](#citp-embed), [`:use`](#citp-use), [`:ord`](#citp-order), [`:imp`](#citp-imply), [`:def`](#citp-def), [`:ctf-`](#citp-ctf-), [`:ctf`](#citp-ctf), [`:csp-`](#citp-csp-), [`:csp`](#citp-csp), [`:red`](#citp-red), [`:select`](#citp-select), [`:backward`](#citp-backward), [`:rule`](#citp-rule), [`:equation`](#citp-equation), [`:cp`](#citp-cp), [`:init`](#citp-init), [`:roll`](#citp-roll), [`:auto`](#citp-auto), [`:ind`](#citp-ind), [`:apply`](#citp-apply), [`:goal`](#citp-goal)
## `clause <term> .` ## {#clause}
(pignose)
## `clean memo` ## {#cleanmemo}
Resets (clears) the memo storage of the system. Memorized computations
are forgotten.
Related: [clean memo switch](#switch-clean-memo)
## `clean memo` switch ## {#switch-clean-memo}
Possible values: `on`, `off`, default `off`.
tells the system to be forgetful.
## `close` ## {#close}
This command closes a modification of a module started by [`open`](#open).
Related: [`open`](#open)
## `commands` ## {#comshelp}
Print outs the list of main toplevel commands.
## comments ## {#comments}
The interpreter accepts the following strings as start of a comment
that extends to the end of the line: `--`, `-->`, `**`, `**>`.
The difference in the variants with `>` is that the comment is
displayed when run through the interpreter.
Related: [`--`](#starstar), [`**`](#starstar)
## `cond limit` switch ## {#switch-cond-limit}
Setting maximal number of evaluation of condition part
of an axiom. This is useful for detecting a kind of inifinite loop
of rewriting.
## `cont` ## {#cont}
In [step mode](#switch-step), continues the reduction until
a [stop pattern](#switch-stop-pattern) has been found.
## `:cp { "[" <label> "]" | "(" <sentence> . ")" } >< { "[" <label> "]" | "(" <sentence> .")" }` ## {#citp-cp}
Computes the critical pair of the two given equations.
Here either a label or a full equation can be used to specify the equations.
Related: [`citp`](#citp)
### Example ###
~~~~~
:cp (ceq top(sq(S@Sys)) = I@Pid if pc(S@Sys,I@Pid) = cs .)
><
(ceq top(sq(S@Sys)) = J@Pid if pc(S@Sys,J@Pid) = cs .)
~~~~~
## `crule [ <label-exp> ] <term> => <term> if <term> .` ## {#crule}
Synonym of [`ctrans`](#ctrans)
Related: [`rule`](#rule), [`ctrans`](#ctrans)
## `:csp { eq [ <label-exp>] <term> = <term> . ...}` ## {#citp-csp}
Applies case splitting after a set of equations. Each of these
equations creates one new sub-goal with the equation added.
The system does not check whether given set of equations exhausts all
possible values.
Not discharged sub-goals will remain in the reduced form.
Related: [`:csp-`](#citp-csp-), [`citp`](#citp)
## `:csp- { eq [ <label-exp>] <term> = <term> . ...}` ## {#citp-csp-}
Like [`:csp`](#citp-csp), but if sub-goals are not discharged, the
CITP prover returns to the original state before the reduce action.
Related: [`:csp`](#citp-csp), [`citp`](#citp)
## `:ctf { eq [ <label-exp> ] <term> = <term> .}` ## {#citp-ctf}
Applies case splitting after a set of boolean expressions.
Not discharged sub-goals will remain in the reduced form.
Related: [`:ctf-`](#citp-ctf-), [`citp`](#citp)
## `:ctf- { eq [ <label-exp> ] <term> = <term> .}` ## {#citp-ctf-}
Like [`:ctf`](#citp-ctf), but if sub-goals are not discharged, the
CITP prover returns to the original state before the reduce action.
Related: [`:ctf`](#citp-ctf), [`citp`](#citp)
## `ctrans [ <label-exp> ] <term> => <term> if <term> .` ## {#ctrans}
Defines a conditional transition. For details see [`trans`](#trans)
and [`ceq`](#ceq).
Related: [`bctrans`](#bctrans), [`btrans`](#btrans), [`trans`](#trans)
## `db reset` ## {#db}
(pignose)
## `:def <symbol> = { <ctf> | <csp> | <init> }` ## {#citp-def}
Assigns a name to a specific case splitting (`:ctf` or `:csp`)
or induction `:ind`),
so that it can be used as tactics in `:apply`.
Related: [`citp`](#citp)
### Example ###
~~~~~
:def name-0 = :ind { :on (<Variable>...) :base <Term> . :step <Term> . }
:def name-1 = :ctf [ <Term> . ]
:def name-2 = :ctf-{ eq LHS = RHS . }
:def name-3 = :csp { eq lhs1 = rhs1 . eq lhs2 = rhs2 . }
:def name-4 = :csp-{ eq lhs3 = rhs3 . eq lhs4 = rhs4 . }
:apply(name-0 TC name-1 name-2 name-3 name-4)
~~~~~
## `demod` ## {#demod}
(pignose)
## `:describe proof` ## {#citp-describe}
Describes the current proof in more detail.
Related: [`:show`](#citp-show), [`citp`](#citp)
### Example ###
~~~~~
PNAT> :describe proof
==> root*
-- context module: #Goal-root
-- targeted sentences:
eq [lemma-1]: M:PNat + 0 = M .
eq [lemma-2]: M:PNat + s N:PNat = s (M + N) .
[si] 1*
-- context module: #Goal-1
-- targeted sentences:
eq [lemma-1]: 0 + 0 = 0 .
eq [lemma-2]: 0 + s N:PNat = s (0 + N) .
...
~~~~~
## `describe <something>` ## {#describe}
Similar to the `show` command but with more details. Call `describe ?` for
the possible set of invocations.
Related: [`show`](#show)
## `dirs` ## {#dirs}
Displays the current push stack.
Related: [`popd`](#popd), [`pwd`](#pwd), [`pushd`](#pushd), [`cd`](#cd), [`ls`](#ls)
## `dribble { <file-name> | .}` ## {#dribble}
If <file-name> is give, the evaluation process of the system is
output to the <file-name> in internal form. '.' stops the recording.
Only usefule for developer of the system.
## `:embed (<label> ... <label>) as <module_name>` ## {#citp-embed}
Incorporate proved goals into the module specified by <module_name>
which will import the current proof context module.
## `eof` ## {#eof}
Terminates reading of the current file. Allows for keeping
untested code or documentations below the `eof` mark. Has
to be on a line by itself without leading spaces.
## `eq [ <label-exp> ] <term> = <term> .` ## {#eq}
Declares an axiom, or equation.
Spaces around the `=` are necessary to separate the left from
the right hand side. The terms given must belong to the
same connected component in the graph defined by the sort ordering.
In simple words, the objects determined by the terms must be
interpretable as of the same sort.
The optional part `<label-exp>` serves two purposes, one is to give
an axiom an identifier, and one is to modify its behavior. The
`<label-exp>` is of the form:
` [ <modifier> <label> ] : `
Warning: The square brackets here are *not* specifying optional
components, but syntactical elements. Thus, a labeled axiom
can look like:
`eq[foobar] : foo = bar .`
The `<modifier>` part is used to change the rewriting behavior of
the axiom. There are at the moment two possible
modifiers, namely `:m-and (:m-and-also)` and `:m-or (:m-or-else)`.
Both make sense only for operators where the arguments come from an
associative sort.
In this case both modifiers create all possible permutations
of the arguments and rewrite the original term to the conjunction
in case of `:m-and` or to the disjunction in case of `:m-or` of all
the generated terms.
Assume that `NatSet` is a sort with associative constructor modeling
a set of natural number, and let
`````
pred p1: Nat .
ops q1 q2 : NatSet -> Bool .
eq [:m-and]: q1(N1:Nat NS:NatSet) = p1(N1) .
eq [:m-or]: q2(N1:Nat NS:NatSet) = p1(N1) .
`````
In this case an expression like `q1(1 2 3)` would reduce to
`p1(1) and p1(2) and p1(3)` (modulo AC), and `q2(1 2 3)` into
the same term with `or` instead.
Related: [`bceq`](#bceq), [`beq`](#beq), [`ceq`](#ceq)
## `:equation` ## {#citp-equation}
Adds the critical pair computed by the last [`:cp`](#citp-cp) command
as equation to the current goal.
Related: [`:rule`](#citp-rule), [`:cp`](#citp-cp), [`citp`](#citp)
## `esc return` ## {#escape}
In case that, after hitting `return` expecting some feed-back,
no such feed-back whatsoever is returned, typing the `escape` key followed by the
`return` key will make the interpreter discard the preceding input
and make a fresh start.
## `exec limit` switch ## {#switch-exec-limit}
Possible values: integers, default limit 4611686018427387903.
Controls the number of maximal transition steps.
Related: [`reduce`](#reduce)
## `exec trace` switch ## {#switch-exec-trace}
Possible values: `on` `off, default `off`.
controls whether further output is provided during reductions.
Related: [`reduce`](#reduce)
## `exec! [ in <mod-exp> : ] <term> .` ## {#execute-dash}
Obsolete command. Implicitly invokes RWL search predicate in a
specific manner.
## `execute [ in <mod-exp> : ] <term> .` ## {#execute}
Reduce the given term in the given module, if `<mod-exp>` is given,
otherwise in the current module.
For `execute` equations and transitions, possibly conditional, are taken
into account for reduction.
Related: [`reduce`](#reduce), [`breduce`](#breduce)
## `extending ( <modexp> )` ## {#extending}
Imports the object specified by `modexp` into the current
module, allowing models to be inflated, but not collapsing.
See [`module expression`](#moduleexpression) for format of `modexp`.
Related: [`using`](#using), [`protecting`](#protecting), [`including`](#including)
## `find {+rule | -rule}` ## {#find}
Find all axioms which possibly rewrite the current term.
## `find all rules` switch ## {#switch-find-all-rules}
If this switch is on, the [`apply`](#apply) command
will search for applicable rules not only in the set of
user-defined equations, but also in those added by the system.
## `flag(<name>, { on | off })` ## {#flag}
(pignose)
## `full reset` ## {#fullreset}
Reinitializes the internal state of the system. All supplied modules
definitions are lost.
Related: [`prelude`](#prelude), [`reset`](#reset)
## `gendoc <pathname>` ## {#gendoc}
generates reference manual from system's on line help documents,
and save it to `pathname`.
## `:goal { <sentence> . ... }` ## {#citp-goal}
Define the initial goal for CITP
Related: [`citp`](#citp)
### Example ###
~~~~~
CafeOBJ> select PNAT .
PNAT> :goal {
eq [lemma-1]: M:PNat + 0 = M .
eq [lemma-2]: M:PNat + s N:PNat = s( M + N ) .
}
~~~~~
## `goal <term> .` ## {#goal}
(pignose)
## `:imp "[" <label> "]" by "{" <variable> <- <term>; ..."}"` ## {#citp-imply}
TODO (future extension)
Related: [`citp`](#citp)
## `imports { <import-decl> }` ## {#imports}
Block enclosing import of other modules (`protecting` etc).
Other statements are not allowed within the `imports` block.
Optional structuring of the statements in a module.
Related: [`using`](#using), [`protecting`](#protecting), [`including`](#including), [`extending`](#extending), [`axioms`](#axioms), [`signature`](#signature)
## `include BOOL` switch ## {#switch-include-bool}
Possible values: `on` `off`, default `on`.
By default a couple of built-in modules are implicitly imported with
protecting mode. In particular, BOOL is of practical importance. It
defines Boolean operators. It is imported to admit conditional
axioms.
This switch allows to disable automatic inclusion of BOOL.
## `include RWL` switch ## {#switch-include-rwl}
Possible values: `on` `off`, default `off`.
This switch allows to disable automatic inclusion of RWL.
## `including ( <modexp> )` ## {#including}
Imports the object specified by `modexp` into the current
module.
See [`module expression`](#moduleexpression) for format of `modexp`.
Related: [module expression](#moduleexpression), [`using`](#using), [`protecting`](#protecting), [`extending`](#extending)
## `:ind { on (<variable> ...) |
'{' on (<variable> ...)
base (<Term> . ... <Term> .)
step (<Term> . ... <Term> .)
'}'` ## {#citp-ind}
':ind on (<variable> ...)' defines the variable for the induction tactic of CITP.
':ind { ... }' defines induction variable(s) and base pattern and step pattern specified by <Term>s.
Related: [`citp`](#citp)
### Example ###
~~~~~
:ind on (M:PNat)
:ind { on (M:PNat)
base (<Term> . ... <Term> .)
step (<Term> . ... <Term> .)
}
~~~~~
## `init [as <name>] { "[" <label> "]" | "(" <sentence> "")} by "{" <variable> <- <term>; ... "}"` ## {#init}
Instantiates an equation specified by `<label>` by replacing the `<variable>`s
in the equation with the respective `<term>`s. The resulting equation is added
to the set of axioms.
If optional `as <name>` is given, label of the instantiated axiom is overwritten by <name>.
Related: [`open`](#open)
## `:init [as <name>] { "[" <label> "]" | "(" <sentence> "")} by "{" <variable> <- <term>; ... "}"` ## {#citp-init}
Instantiates an equation specified by `<label>` by replacing the `<variable>`s
in the equation with the respective `<term>`s. The resulting equation is added
to the set of axioms.
If optional `as <name>` is given, label of the instantiated axiom is overwritten by <name>.
Related: [`citp`](#citp)
## `input <pathname>` ## {#input}
Requests the system to read the file specified by the
pathname. The file itself may contain `input` commands.
CafeOBJ reads the file up to the end, or until it encounters
a line that only contains (the literal) `eof`.
## `inspect <term>` ## {#inspect}
Inspect the internal structure of `<term>`.
## instantiation of parameterized modules ## {#instantiation}
Parameterized modules allow for instantiation. The process of
instantiation binds actual parameters to formal parameters. The result
of an instantiation is a new module, obtained by replacing occurrences
of parameter sorts and operators by their actual counterparts. If, as
a result of instantiation, a module is imported twice, it is assumed
to be imported once and shared throughout.
Instantiation is done by
`<module_name> ( <bindings> )`
where `<module_name>` is the name of a parameterized module, and
`<bindings>` is a comma-separated list of binding constructs.
using declared views
~ you may bind an already declared view to a parameter:
`<parameter> <= <view_name>`
If a module `M` has a parameter `X :: T` and a view `V` from `T`
to `M'` is declared, `V` may be bound to `X`, with the effect that
1. The sort and operator names of `T` that appear in the body
of `M` are replaced by those in `M'`, in accordance with `V`,
2. The common submodules of `M` and `M'` are shared.
using ephemeral views
~ In this case the view is declared and used at the same time.
`<parameter> <= view to <mod_name> { <view_elements> }`
See [`view`](#view) for details concerning `<view_elements>`. The
`from` parameter in the `view` declaration is taken from
`<parameter>`.
To make notation more succinct, parameters can be identified also by
position instead of names as in
`<mod_name> ( <view_name>, <view_name> )`
which would bind the `<view_name>`s to the respective parameters
of the parameterized module `<mod_name>`.
This can be combined with the ephemeral definition of a view like in
the following example (assume `ILIST` has two parameters):
~~~~~
module NAT-ILIST {
protecting ( ILIST(SIMPLE-NAT { sort Elt -> Nat },
DATATYPE { sort Elt -> Data }) )
}
~~~~~
## `:is` ## {#citp-is}
Boolean expression: `A :is B` where `A` is a term and
`B` is a sort. Returns true if `A` is of sort `B`.
## `let <identifier> = <term> .` ## {#let}
Using `let` one can define aliases, or context variables. Bindings
are local to the current module. Variable defined with `let` can be
used in various commands like `reduce` and `parse`.
Although `let` defined variable behave very similar to syntactic
shorthands, they are not. The right hand side `<term>` needs to
be a fully parsable expression.
## `lex (<op>, ..., <op>)` ## {#lex}
(pignose)
## `libpath` switch ## {#switch-libpath}
Possible values: list of strings.
The switch `libpath` contains a list of directories where CafeOBJ
searches for include files. Addition and removal of directories can be
done with
`````
set libpath + <path1>:<path2>:...
set libpath - <path1>:<path2>:...
`````
or the full libpath reset by `set libpath <path1>:<path2>:...`
The current directory has a privileged status: It is always searched
first and cannot be suppressed.
## `lisp` ## {#lisp}
Evaluates the following lisp expression.
### Example ###
`````
CafeOBJ> lisp (+ 4 5)
(+ 4 5) -> 9
`````
## `lispq` ## {#lispq}
Evaluates the following lisp expression, but does not
display the result (q for quiet).
## `list { axiom | sos | usable | flag | param | option | demod }` ## {#list}
(pignose)
## `look up <something>` ## {#lookup}
displays the location (module) and further information
where `<something>` has been defined.
### Example ###
~~~~~
open INT .
%INT> look up Nat .
Nat
- sort declared in NAT-VALUE
- operator:
op Nat : -> SortId { constr prec: 0 }
-- declared in module NAT-VALUE
%INT>
~~~~~
## `ls <pathname>` ## {#ls}
lists the given `pathname`. Argument is obligatory.
Related: [`pwd`](#pwd), [`cd`](#cd)
## `make <mod_name> ( <mod_exp> )` ## {#make}
This commands defines a new module `<mod_name>` by evaluating the
module expression `<mod_exp>`.
Related: [`module expression`](#moduleexpression)
## `match <term_spec> to <pattern> .` ## {#match}
Matches the term denoted by `<term_spec>` to the
pattern. `<term_spec>` is either `top` or `term` for the term set by
the `start` command; `subterm` for the term selected by the `choose`
command; `it` has the same meaning as `subterm` if `choose` was used,
otherwise the same meaning as `top`, or a normal term expression.
The given `<pattern>` is either `rules`, `-rules`, `+rules`, one of
these three prefixed by `all`, or a term. If one of the `rules` are
given, all the rules where the left side (for `+rules`), the right
side (for `-rules`), or any side (for `rules`) matches. If the `all`
(with separating space) is given all rules in the current context,
including those declared in built-in modules, are inspected.
If a term is given, then the two terms are matched, and if successful,
the matching substitution is printed.
## `memo` switch ## {#switch-memo}
controls the memorization of computations. The system memorizes
evaluations of operators declared with the [`memo`](#opattr) operator
attribute. Turning this switch off disables all memorization.
## `[sys:]module[!|*] <modname> [ ( <params> ) ] [ <principal_sort_spec> ] { mod_elements ... }` ## {#module}
Defines a module, the basic building block of CafeOBJ. Possible elements
are declarations of
- import - see `protecting`, `extending`, `including`, `using`
- sorts - see `sort declaration`
- variable - see `var`
- equation - see `op`, `eq`, `ceq`, `bop`, `beq`, `bceq`
- transition - see `trans`, `ctrans`, `btrans`, `bctrans`
`modname` is an arbitrary string.
`module*` introduces a loose semantic based module.
`module!` introduces a strict semantic based module.
`module` introduces a module without specified semantic type.
If `params` are given, it is a parameterized module.
See [`parameterized module`](#parameterizedmodule) for more details.
If `principal_sort_spec` is given, it has to be of the form
`principal-sort <sortname>` (or `p-sort <sortname>`). The principal
sort of the module is specified, which allows more concise `view`s from
single-sort modules as the sort mapping needs not be given.
## `module expression` ## {#moduleexpression}
In various syntax elements not only module names itself, but whole
module expressions can appear. A typical example is
`open <mod_exp> .`
which opens a module expression. The following constructs are
supported:
module name
~ using the name of a module
renaming
~ `<mod_exp> * { <mappings> }`
This expressions describes a new module where sort and/or
operators are renamed.
`<mappings>` are like in the case of [`view`](#view) a comma
separated list of mappings of either sorts (`sort` and `hsort`) or
operators (`op` and `bop`). Source names may be qualified, while
target names are not, they are required to be new names. Renaming
is often used in combination with [instantiation](#instantiation).
summation
~ `<mod_exp> + <mod_exp>`
This expression describes a module consisting of all the module
elements of the summands. If a submodule is imported more than
once, it is assumed to be shared.
## `names <mod-exp>` . ## {#names}
List up all the named objects in module <mod-exp>.
## `no autoload <module-name>` ## {#no-autoload}
Stop `autoload` of module with the name <module-name> .
Please refer to `autoload` command.
Related: [`autoload`](#autoload)
## `:normalize { on | off}` ## {#citp-normalize}
Normalize the LHS of an instance of the axiom generated by :init command.
Related: [`citp`](#citp)
## on-the-fly declarations ## {#onthefly}
Variables and constants can be declared *on-the-fly* (or *inline*). If an
equation contains a qualified variable (see [qualified term](#qualified)),
i.e., `<name>:<sort-name>`, then from this point on *within* the current
equation only `<name>` is declared as a variable of sort `<sort-name>`.
It is allowed to redeclare a previously defined variable name via
an on-the-fly declaration, but as mentioned above, not via an
explicit redeclaration.
Using a predeclared variable name within an equation first as is,
that is as the predeclared variable, and later on in the same
equation with an on-the-fly declaration is forbidden. That is, under
the assumption that `A` has been declared beforehand, the following
equation is *not* valid:
`eq foo(A, A:S) = A .`
On-the-fly declaration of constants are done the same way, where the
`<name>` is a constant name as in ``a:Nat`. Using this construct is
similar to defining an operator
`op <name> : -> <sort>`
or in the above example, `op a : -> Nat .`, besides that the
on-the-fly declaration of constants, like to one of variables, is only
valid in the current context (i.e., term or axiom). These constant
definitions are quite common in proof scores.
Related: [`var`](#var)
## `op <op-spec> : <sorts> -> <sort> { <attribute-list> }` ## {#op}
Defines an operator by its domain, co-domain, and the term construct.
`<sorts>` is a space separated list of sort names, `<sort>` is a
single sort name.
`<op-spec>` can be of the following forms:
prefix-spec
~ the `<op-spec>` does not contain a literal `_`:
This defines a normal prefix operator with domain `<sorts>` and
co-domain `<sort>`
Example: `op f : S T -> U`
mixfix-spec
~ the `<op-spec>` contains exactly as many literal `_` as there are
sort names in `<sorts>`:
This defines an arbitrary mixfix (including postfix) operator
where the arguments are inserted into the positions designated
by the underbars.
Example: `op _+_ : S S -> S`
For the description of `<attribute-list>` see the entry for
[operator attributes](#opattr).
## `open <mod_exp> .` ## {#open}
This command opens the module specified by the module expression
`<mod_exp>` and allows for declaration of new sorts, operators, etc.
Related: [`select`](#select), [`module expression`](#moduleexpression), [`close`](#close)
## `operator attributes` ## {#opattr}
In the specification of an operator using the [`op`](#op) (and
related) keyword, attributes of the operator can be specified.
An `<attribute-list>` is a space-separate list of single
attribute definitions. Currently the following attributes are
supported
`associative`
~ specifies an associative operator, alias `assoc`
`commutative`
~ specifies a commutative operator, alias `comm`
`itempotence`
~ specifies an idempotent operator, alias `idem`
`id: <const>`
~ specifies that an identity of the operator exists and
that it is `<const>`
`prec: <int>`
~ specifies the parsing precedence of the operator, an integer <int>.
Smaller precedence values designate stronger binding. See
[operator precedence](#opprec) for details of the predefined
operator precedence values.
`l-assoc` and `r-assoc`
~ specifies that the operator is left-associative or
right-associative
`constr`
~ specifies that the operator is a constructor of the coarity sort.
(not evaluated at the moment)
`strat: ( <int-list> )`
~ specifies the evaluation strategy. Each integer in the list refers
to an argument of the operator, where `0` refers to the whole term,
`1` for the first argument, etc. Evaluation proceeds in order of
the `<int-list>`. Example:
`op if_then_else_fi : Bool Int Int -> Int { strat: (1 0) }`
In this case the first argument (the Boolean term) is tried to
be evaluated, and depending on that either the second or third.
But if the first (Boolean) argument cannot be evaluated,
no evaluation in the subterms will appear.
Using negative values allows for lazy evaluation of the corresponding
arguments.
`memo`
~ tells the system to remember the results of evaluations where the
operator appeared. See [`memo` switch](#switch-memo) for details.
Remarks:
- Several operators of the same arity/coarity can be defined by
using `ops` instead of `op`:
`ops f g : S -> S`
For the case of mixfix operators the underbars have to be given
and the expression surrounded by parenthesis:
`ops (_+_) (_*_) : S S -> S`
- Spaces *can* be part of the operator name, thus an operator
definition of `op foo op : S -> S` is valid, but not advisable,
as parsing needs hints.
- A single underbar cannot be an operator name.
Related: [`bop`](#bop)
## `operator precedence` ## {#opprec}
CafeOBJ allows for complete freedom of syntax, in particular infix
operators and overloading. To correctly parse terms that are ambiguous,
all operators have precedence values. These values can be adjusted
manually during definition of the operator
(see [operator attributes](#opattr)). In absence of manual
specification of the operator precedence, the values are determined by
the following rules:
- standard prefix operators, i.e., those of the form `op f : S1 .. Sk -> S`,
receive operator precedence value 0.
- unary operators, i.e., those of the form `op u_ : S1 -> S`, receive
precedence 15.
- mix-fix operators with first and last token being arguments, i.e.,
those of the form `op _ arg-or-op _ : S1 .. Sk -> S`, receive
precedence 41.
- all other operators (constants, operators of the form `a _ b`, etc.)
receive precedence 0.
Related: [operator attributes](#opattr)
## `option { reset | = <name> }` ## {#option}
(pignose)
## `:order (<op>, ..., <op>)` ## {#citp-order}
## `param(<name>, <value>)` ## {#param}
(pignose)
## `parameterized module` ## {#parameterizedmodule}
A module with a parameter list (see `module`) is a parameterized module.
Parameters are given as a comma (`,`) separated list. Each parameter is
of the form `[ <import_mode> ] <param_name> :: <module_name>`
(spaces around `::` are obligatory).
The parameter's module gives minimal requirements on the module
instantiation.
Within the module declaration sorts and operators of the parameter
are qualified with `.<parameter_name>` as seen in the example below.
Related: [qualified sort](#qualifiedother)
### Example ###
~~~~~
mod* C {
[A]
op add : A A -> A .
}
mod! TWICE(X :: C) {
op twice : A.X -> A.X .
eq twice(E:A.X) = add.X(E,E) .
}
~~~~~
## `parse [ in <mod-exp> : ] <term> .` ## {#parse}
Tries to parse the given term within the module specified by
the module expression `<mod-exp>`, or the current module if not given,
and returns the parsed and qualified term.
In case of ambiguous terms, i.e., different possible parse trees, the
command will prompt for one of the trees.
Related: [`qualified term`](#qualified)
## `parse normalize` switch ## {#switch-parse-normalize}
If this switch is 'on' (defalult is 'off'), terms with
associative operators are always parsed as right associative.
## `popd` ## {#popd}
Changes the current working directory to the last on on the push stack.
Related: [`dirs`](#dirs), [`pwd`](#pwd), [`pushd`](#pushd), [`cd`](#cd), [`ls`](#ls)
## `pred <op-spec> : <sorts>` ## {#pred}
Short hand for `op <op-spec> : <sorts> -> Bool` defining a predicate.
Related: [`bpred`](#bpred), [`op`](#op)
## `prelude <file>` ## {#prelude}
Loads the given `<file>` as prelude. That is, a call to
[`reset`](#reset) will reset the definitions made in this file.
Related: [`full reset`](#fullreset), [`reset`](#reset)
## `print depth` switch ## {#switch-print-depth}
Possible values: natural numbers, default `unlimited`.
Controls to which depth terms are printed.
## `print mode` switch ## {#switch-print-mode}
Possible values: `normal` `fancy` `tree` `s-expr`
Selects one of the print modes.
## `print trs` switch ## {#switch-print-trs}
Possible values: `on` `off`, default `off`
If set to `on`, print the rules used during reduction of
`=(_,_)=>+_if_suchThat_{_}`.
Related: [`search predicates`](#searchpredicate)
## `protect <module-name>` ## {#protect}
Protect a module from being overwritten.
Some modules vital for the system are initially protected.
Can be reversed with `unprotect`.
Related: [`unprotect`](#unprotect)
## `protecting ( <modexp> )` ## {#protecting}
Imports the object specified by `modexp` into the current
module, preserving all intended models as they are.
See [`module expression`](#moduleexpression) for format of `modexp`.
Related: [`including`](#including), [`using`](#using), [`extending`](#extending)
## `provide <feature>` ## {#provide}
Discharges a feature requirement: once `provide`d, all the subsequent
`require`ments of a feature are assumed to have been fulfilled
already.
Related: [`require`](#require)
## `pushd <directory>` ## {#pushd}
Changes the working directory to `<directory>`, and puts the
current directory onto the push stack. Going back can be done with `pop`.
Related: [`dirs`](#dirs), [`pwd`](#pwd), [`popd`](#popd), [`cd`](#cd), [`ls`](#ls)
## `pvar <var-name> : <sort-name>` ## {#pvar}
(pignose)
Related: [`vars`](#var), [`var`](#var)
## `pwd` ## {#pwd}
Prints the current working directory.
Related: [`dirs`](#dirs), [`popd`](#popd), [`pushd`](#pushd), [`ls`](#ls), [`cd`](#cd)
## qualified sort/operator/parameter ## {#qualifiedother}
CafeOBJ allows for using the same name for different sorts,
operators, and parameters. One example is declaring the same sort in
different modules. In case it is necessary to qualify the sort,
operator, or parameter, the intended module name can be affixed after
a literal `.`: `<name>.<modname>`
Example: In case the same sort `Nat` is declared in both the module
`SIMPLE-NAT` and `PANAT`, one can use `Nat.SIMPLE-NAT` to reference
the sort from the former module.
Furthermore, a similar case can arise when operators of the same name
have been declared with different number of arguments. During operator
renaming (see [view](#view)) the need
for qualification of the number of parameters might arise. In this
case the number can be specified after an affixed `/`:
`<opname>/<argnr>`
Related: [`qualified term`](#qualified), [`parameterized module`](#parameterizedmodule)
## `qualified term` ## {#qualified}
In case that a term can be parsed into different sort, it is possible to
qualify the term to one of the possible sorts by affixing it with
`: <sort-name>` (spaces before and after the `:` are optional).
Related: [`parse`](#parse)
### Example ###
`(1):NzNat` `(2):Nat`
## `quiet` switch ## {#switch-quiet}
Possible values: `on` `off`, default `off`
If set to `on`, the system only issues error messages.
Related: [`verbose`](#switch-verbose)
## `quit` ## {#quit}
Leaves the CafeOBJ interpreter.
## `{ :red | :exec | :bred } [in <goal-name> :] <term> .` ## {#citp-red}
reduce the term in specified goal <goal-name>.
Related: [`citp`](#citp)
## `reduce [ in <mod-exp> : ] <term> .` ## {#reduce}
Reduce the given term in the given module, if `<mod-exp>` is given,
otherwise in the current module.
For `reduce` only equations and conditional equations are taken into
account for reduction.
Related: [`breduce`](#breduce), [`execute`](#execute)
## `reduce conditions` switch ## {#switch-reduce-conditions}
Possible values: `on` `off`, default `off`.
When using [`apply`](#apply) to step through a reduction, this switch
allows to turn on automatic reduction of conditions in conditional
equations.
Related: [`apply`](#apply)
## `regularize <mod-name>` ## {#regularize}
Regularizes the signature of the given module, ensuring that every
term has exactly one minimal parse tree. In this process additional
sorts are generated to ensure unique least sort of all terms.
Modules can be automatically regularized by the interpreter if the
`regularize signature` switch is turn to `on`.
## `regularize signature` switch ## {#switch-regularize-signature}
See [`regularize](#regularize)
## `require <feature> [ <pathname> ]` ## {#require}
Requires a feature, which usually
denotes a set of module definitions. Given this command, the
system searches for a file named the feature, and read the file
if found. If the `<feature>` contains `::`, they are treated as
path separators.
If a pathname is given, the system searches for a file
named the pathname instead.
Related: [`provide`](#provide)
### Example ###
~~~~~
CafeOBJ> require foo::bar
~~~~~
would search for `foo/bar.cafe` in the pathes from `libpath`
## `:reset` ## {#citp-reset}
Discard the current proof session.
## `reset` ## {#reset}
Restores the definitions of built-in modules and preludes, but does not
affect other modules.
Related: [`prelude`](#prelude), [`full reset`](#fullreset)
## `resolve {. | <file-path> }` ## {#resolve}
(pignose)
## `restore <pathname>` ## {#restore}
Restores module definitions from the designated file `pathname` which
has been saved with the `save` command. `input` can also be used but
the effects might be different.
TODO -- should we keep the different effects? What is the real difference?
Related: [`save-system`](#target_not_found), [`save`](#save), [`input`](#input)
## `rewrite limit` switch ## {#switch-rewrite}
Possible values: positive integers, default not specified.
Allows limiting the number of rewrite steps during a step-wise
execution.
Related: [`step switch`](#switch-step)
## `:roll back` ## {#citp-roll}
Reverts the strategy that led to the current target goal.
The current target goal is removed from the proof tree.
Related: [`citp`](#citp)
## `:rule` ## {#citp-rule}
Adds the critical pair computed by the last [`:cp`](#citp-cp) command
as rule to the current goal.
Related: [`:equation`](#citp-equation), [`:cp`](#citp-cp), [`citp`](#citp)
## `rule [ <label-exp> ] <term> => <term> .` ## {#rule}
Synonym of [`trans`](#trans).
Related: [`trans`](#trans)
## `save <pathname>` ## {#save}
Saves module definitions into the designated file `pathname`.
File names should be suffixed with `.bin`.
`save` also saves the contents of prelude files as well as module definitions
given in the current session.
Related: [`save-system`](#target_not_found), [`restore`](#restore), [`input`](#input)
## `save-option <name>` ## {#save-option}
(pignose)
## `scase (<term>) in (<mod-exp>) as <name> { <decl> ..} : <term> .` ## {#scase}
Obsolete citp command. Split the goal by user specified cases.
## `search predicates` ## {#searchpredicate}
CafeOBJ provides a whole set of search predicates, that searches
the reachable states starting from a given state, optionally checking
additional conditions. All of them based on the following three basic ones:
- `S =(n,m)=>* SS [if Pred]` search states reachable by 0 or more transitions;
- `S =(n,m)=>+ SS [if Pred]` search states reachable by 1 or more transitions;
- `S =(n,m)=>! SS [if Pred]` search states reachable by 0 or more transitions, and
require that the reached state is a final state, i.e., no further
transitions can be applied.
To allow for conditional transitions, a transition is only considered
in the search if `Pred` holds.
The parameters `n` and `m` in these search predicates:
- `n`, a natural number or `*`, gives the maximal number of solutions
to be searched. If `*` is given all solutions are searched
exhaustively.
- `m`, a natural number but not `*`, gives the maximal depth up to
which search is performed.
The predicates return true if there is a (chain of) transitions
that fits the parameters (`n`,`m`, and `*`, `+`, `!`) and connects `S`
with `SS`.
There are two orthogonal extension to this search predicate, one
adds a `suchThat` clause, one adds a `withStateEq` clause.
`S =(n,m)=>* SS [if Pred1] suchThat Pred2`
~ (and similar for `!` and `+`) In this case not only the existence,
of a transition sequence is tested, but also whether the predicate
`Pred2`, which normally takes `S` and `SS` as arguments, holds.
`S =(n,m)=>* SS [if Pred1] withStateEq Pred2`
~ (and similar for `!` and `+`) `Pred2` is used to determine whether
a search continues at `SS` or not, by comparing `SS` with all
states that have been traversed in the current search. If the
predicate `Pred2` returns true on the combination of `SS` as
first argument, and any of the previously visited states as
second argument, then the search is *not* continued after `SS`.
(This is a kind of loop detection.)
These two cases can also be combined into
`S =(n,m)=>* SS [if Pred1] suchThat Pred2 withStateEq Pred3`
## `:select <goal-name>` ## {#citp-select}
Select a goal for further application of tactics.
Related: [`citp`](#citp)
## `select <mod_exp> . ` ## {#select}
Selects a module given by the module expression `<mod_exp>` as the
current module. All further operations are carried out within the
given module. In contrast to `open` this does not allow for
modification of the module, e.g., addition of new sorts etc.
Related: [`module expression`](#moduleexpression), [`open`](#open)
## `:set(<name>, { on | off | show })` ## {#citp-set}
Set or show various flags of CITP CafeOBJ.
Related: [`citp`](#citp)
## `set <name> [option] <value>` ## {#set}
Depending on the type of the switch, options and value specification varies.
Possible value types for switches are Boolean (`on`, `off`), string (`"value"`),
integers (5434443), lists (lisp syntax).
For a list of all available switches, use `set ?`. To see the current
values, use `show switches`. To single out two general purpose switches,
`verbose` and `quiet` tell the system to behave in the respective way.
Related: [`switches`](#switches), [`show`](#show)
## `:show goal|unproved|proof|discharged` ## {#citp-show}
Shows the current goal, the up-to-now unproven (sub-)goals, and the current proof.
Related: [`:describe`](#citp-describe), [`citp`](#citp)
### Example ###
~~~~~
PNAT> :show proof
root*
[si] 1*
[ca] 1-1*
[ca] 1-2*
[tc] 1-2-1*
[si] 2*
[ca] 2-1*
[ca] 2-2*
[tc] 2-2-1*
PNAT>
~~~~~
## `show <something>` ## {#show}
The `show` command provides various ways to inspect all kind of objects
of the CafeOBJ language. For a full list call `show ?`.
Some of the more important (but far from complete list) ways to call
the `show` command are:
- `show [ <modexp> ]` - describes the current modules of the one specified
as argument
- `show module tree [ <modexp> ]` - displays submodules of <modexp> in tree format
- `show switches` - lists all possible switches
- `show term [ tree ]` - displays a term, possible in tree format
See the entry for [`switches`](#switches) for a full list.
Related: [`describe`](#describe), [`switches`](#switches)
## `show mode` switch ## {#switch-show-mode}
Possible values for `set show mode <mode>` are `cafeobj` and `meta`.
## `sigmatch (<mod-exp>) to (<mod-exp>)` ## {#sigmatch}
(pignose)
## `signature { <sig-decl> }` ## {#signature}
Block enclosing declarations of sorts and operators.
Other statements are not allowed within the `signature` block.
Optional structuring of the statements in a module.
Related: [`op`](#op), [`sort`](#sort), [`imports`](#imports), [`axioms`](#axioms)
## sort declaration ## {#sort}
CafeOBJ supports two kind of sorts, visible and hidden sorts. Visible
sorts are introduced between `[` and `]`, while hidden sorts are introduced
between `*[` and `]*`.
~~~~
[ Nat ]
*[ Obs ]*
~~~~
Several sorts can be declared at the same time, as in `[ Nat Int ]`.
Since CafeOBJ is based on order sorting, sorts can form a partial order.
Definition of the partial order can be interleaved by giving
~~~~
[ <sorts> < <sorts> ]
~~~~
Where `sorts` is a list of sort names. This declaration defines an inclusion
relation between each pair or left and right sorts.
### Example ###
~~~~
[ A B , C D < A < E, B < D ]
~~~~
defines five sorts `A`,...,`E`, with the following relations:
`C < A`, `D < A`, `A < E`, `B < D`.
## `sos { = | + | - } { <clause> , ... }` ## {#sos}
(pignose)
## `:spoiler { on | off}` ## {#citp-spoiler}
If the spoiler flag is on, after a strategy other than RD and SI
has been applied, the generated sub-goals are automatically checked for
provability using the RD strategy. Defaults to `off`.
Related: [`citp`](#citp)
## `start <term> .` ## {#start}
Sets the focus onto the given term `<term>` of the currently opened
module or context. Commands like `apply`, `choose`, or `match` will
then operate on this term.
Related: [`match`](#match), [`choose`](#choose), [`apply`](#apply)
## `statistics` switch ## {#switch-statistics}
Possible values: `on` `off`, default `on`.
After each reduction details about the reduction are
shown. Information shown are the time for parsing the expression, the
number of rewrites and run time during rewriting, and the number of
total matches performed during the reduce.
## `step` switch ## {#switch-step}
Possible values: `on` `off`, default `off`.
With this switch turned on, rewriting proceeds in steps and prompts
the user interactively. At each prompt the following commands can be
given to the stepper (with our without leading colon `:`):
`help`
: (`h`, `?`) print out help page
`next`
: (`n`) go one step
`continue`
: (`c`) continue rewriting without stepping
`quit`
: (`q`) leave stepper continuing rewrite
`abort`
: (`a`) abort rewriting
`rule`
: (`r`) print out current rewrite rule
`subst`
: (`s`) print out substitution
`limit`
: (`l`) print out rewrite limit count
`pattern`
: (`p`) print out stop pattern
`stop [<term>] .`
: set (or unset) stop pattern
`rwt [<number>] .`
: set (or unset) max number of rewrite
Other standard CafeOBJ commands that can be used are [`show`](#show),
[`describe`](#describe), [`dirs`](#dirs), [`set`](#set), [`cd`](#cd),
[`ls`](#ls), [`pwd`](#pwd), [`pushd`](#pushd), [`popd`](#popd),
[`lisp`](#lisp), [`lispq`](#lisp), and (on Unix only)
[`!`](#commandexec).
## `stop` ## {#stop}
Equivalent to [`stop pattern switch`](#switch-stop-pattern)
## `stop pattern` switch ## {#switch-stop-pattern}
In [step mode](#switch-step), this command causes reductions to stop when the reductants get to
containing subterms that match the given term. If no term is given,
this restriction is lifted.
Related: [`step switch`](#switch-step)
### Example ###
~~~~~
CafeOBJ> open NAT .
%NAT> set step on .
%NAT> set stop pattern s 2 .
%NAT> red s s s s s s s s s 0 .
>> target: (s 0)
STEP[1]? c
>> term matches to stop pattern: (s 2)
<< will stop rewriting
>> stop because matches stop pattern.
>> target: (s 2)
STEP[3]? c
(9):NzNat
~~~~~
## switches ## {#switches}
Switches control various aspects of the computations and behavior
of CafeOBJ. The current list of switches and their values can be
shown with
`````
show switches
`````
The single switches are described separately in this manual.
Related: [`show`](#show), [`set`](#set)
## `:theory <op_name> : <arity> -> <coarity> { assoc | comm | id: <term> }` ## {#citp-theory}
Adds operator theory 'associativity', 'commutativity', and/or 'identity' to
an operator specfied by '<op_name> : <arity> -> <coarity> .
## `trace [whole]` switch ## {#switch-trace}
During evaluation, it is sometimes desirable to see the rewrite
sequences, not just the results. Setting the switch `trace whole` will
result in the resultant term of each rewrite step being
printed. Setting the switch `trace` will result in the display of
which rule, substitution, and replacement are used.
## `trans [ <label-exp> ] <term> => <term> .` ## {#trans}
Defines a transition, which is like an equation but without
symmetry.
See [`eq`](#eq) for specification of requirements on `<label-exp>`
and the terms.
Transitions and equations server similar, but different purpose. In
particular, reductions (both with or without behavior axioms used) do
not take transitions into account. Only [`exec`](#execute) also uses
transitions. On the other hand, the built-in
[search predicate](#searchpredicate) searches all possible transitions
from a given term.
## `unprotect <module-name>` ## {#unprotect}
Remove overwrite protection from a module that has been protected
with the `protect` call. Some modules vital for the system
are initially protected.
Related: [`protect`](#protect)
## `:use (<label> ... <label>)` ## {#citp-use}
Incorporate discharged goal sentences as new axioms.
## `using ( <modexp> )` ## {#using}
Imports the object specified by `modexp` into the current
module without any restrictions on the models.
See [`module expression`](#moduleexpression) for format of `modexp`.
Related: [`protecting`](#protecting), [`including`](#including), [`extending`](#extending)
## `var <var-name> : <sort-name>` ## {#var}
Declares a variable `<var-name>` to be of sort `<sort-name>`.
The scope of the variable is the current module.
Redeclarations of variable names are not allowed.
Several variable of the same sort can be declared at the same time
using the `vars` construct:
`vars <var-name> ... : <sort-name>`
Related: [`on-the-fly`](#onthefly), [`qualified term`](#qualified), [`op`](#op)
## `:verbose { on | off }` ## {#citp-verbose}
Turns on verbose reporting of the CITP subsystem.
Related: [`citp`](#citp)
## `verbose` switch ## {#switch-verbose}
Possible values: `on` `off`, default `off`.
If turn `on`, the system is much more verbose in many commands.
Related: [`quiet switch`](#switch-quiet)
## `version` ## {#version}
Prints out the version of CafeOBJ.
## `view <name> from <modname> to <modname> { <viewelems> }` ## {#view}
A view specifies ways to bind actual parameters to formal parameters
(see [parameterized module](#parameterizedmodule)). The view has to
specify the mapping of the sorts as well as the operators.
The `<viewelems>` is a comma-separated list of expressions specifying
these mappings:
~~~~
sort <sortname> -> <sortname>
hsort <sortname> -> <sortname>
op <opname> -> <opname>
bop <opname> -> <opname>
~~~~
and also can contain variable declarations.
Infix operators are represented as terms containing the operator with
either literal underscores `_`, or variables: `_*_` or `X * Y`.
The `<opname>` can be qualified.
In specifying views some rules can be omitted:
1. If the source and target modules have common submodules, all the
sorts and modules declared therein are assumed to be mapped to
themselves;
2. If the source and target modules have sorts and/or operators with
identical names, they are mapped to their respective counterparts;
3. If the source module has a single sort and the target has a
principal sort, the single sort is mapped to the principal sort.
### Example ###
Assume a module `MONOID` with sort `M` and ops `e` and `*`
are given, and another `SIMPLE-NAT` with sort `Nat` and operators `0`
and `+` (with the same arity). Then the following expression
constitutes a view:
~~~~~
view NAT-AS-MONOID from MONOID to SIMPLE-NAT {
sort M -> Nat,
op e -> 0,
op _*_ -> _+_
}
~~~~~
|