File: bnll_layer.hpp

package info (click to toggle)
caffe-contrib 1.0.0%2Bgit20180821.99bd997-2
  • links: PTS, VCS
  • area: contrib
  • in suites: buster
  • size: 16,244 kB
  • sloc: cpp: 61,579; python: 5,783; makefile: 586; sh: 562
file content (70 lines) | stat: -rw-r--r-- 2,307 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#ifndef CAFFE_BNLL_LAYER_HPP_
#define CAFFE_BNLL_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/layers/neuron_layer.hpp"

namespace caffe {

/**
 * @brief Computes @f$ y = x + \log(1 + \exp(-x)) @f$ if @f$ x > 0 @f$;
 *        @f$ y = \log(1 + \exp(x)) @f$ otherwise.
 *
 * @param bottom input Blob vector (length 1)
 *   -# @f$ (N \times C \times H \times W) @f$
 *      the inputs @f$ x @f$
 * @param top output Blob vector (length 1)
 *   -# @f$ (N \times C \times H \times W) @f$
 *      the computed outputs @f$
 *      y = \left\{
 *         \begin{array}{ll}
 *            x + \log(1 + \exp(-x)) & \mbox{if } x > 0 \\
 *            \log(1 + \exp(x)) & \mbox{otherwise}
 *         \end{array} \right.
 *      @f$
 */
template <typename Dtype>
class BNLLLayer : public NeuronLayer<Dtype> {
 public:
  explicit BNLLLayer(const LayerParameter& param)
      : NeuronLayer<Dtype>(param) {}

  virtual inline const char* type() const { return "BNLL"; }

 protected:
  /// @copydoc BNLLLayer
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  /**
   * @brief Computes the error gradient w.r.t. the BNLL inputs.
   *
   * @param top output Blob vector (length 1), providing the error gradient with
   *      respect to the outputs
   *   -# @f$ (N \times C \times H \times W) @f$
   *      containing error gradients @f$ \frac{\partial E}{\partial y} @f$
   *      with respect to computed outputs @f$ y @f$
   * @param propagate_down see Layer::Backward.
   * @param bottom input Blob vector (length 2)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the inputs @f$ x @f$; Backward fills their diff with
   *      gradients @f$
   *        \frac{\partial E}{\partial x}
   *      @f$ if propagate_down[0]
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};

}  // namespace caffe

#endif  // CAFFE_BNLL_LAYER_HPP_