1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
#ifndef CAFFE_FILTER_LAYER_HPP_
#define CAFFE_FILTER_LAYER_HPP_
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Takes two+ Blobs, interprets last Blob as a selector and
* filter remaining Blobs accordingly with selector data (0 means that
* the corresponding item has to be filtered, non-zero means that corresponding
* item needs to stay).
*/
template <typename Dtype>
class FilterLayer : public Layer<Dtype> {
public:
explicit FilterLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "Filter"; }
virtual inline int MinBottomBlobs() const { return 2; }
virtual inline int MinTopBlobs() const { return 1; }
protected:
/**
* @param bottom input Blob vector (length 2+)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs to be filtered @f$ x_1 @f$
* -# ...
* -# @f$ (N \times C \times H \times W) @f$
* the inputs to be filtered @f$ x_K @f$
* -# @f$ (N \times 1 \times 1 \times 1) @f$
* the selector blob
* @param top output Blob vector (length 1+)
* -# @f$ (S \times C \times H \times W) @f$ ()
* the filtered output @f$ x_1 @f$
* where S is the number of items
* that haven't been filtered
* @f$ (S \times C \times H \times W) @f$
* the filtered output @f$ x_K @f$
* where S is the number of items
* that haven't been filtered
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Computes the error gradient w.r.t. the forwarded inputs.
*
* @param top output Blob vector (length 1+), providing the error gradient with
* respect to the outputs
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 2+), into which the top error
* gradient is copied
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
bool first_reshape_;
vector<int> indices_to_forward_;
};
} // namespace caffe
#endif // CAFFE_FILTER_LAYER_HPP_
|