File: filter_layer.hpp

package info (click to toggle)
caffe-contrib 1.0.0%2Bgit20180821.99bd997-2
  • links: PTS, VCS
  • area: contrib
  • in suites: buster
  • size: 16,244 kB
  • sloc: cpp: 61,579; python: 5,783; makefile: 586; sh: 562
file content (77 lines) | stat: -rw-r--r-- 2,700 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#ifndef CAFFE_FILTER_LAYER_HPP_
#define CAFFE_FILTER_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

namespace caffe {

/**
 * @brief Takes two+ Blobs, interprets last Blob as a selector and
 *  filter remaining Blobs accordingly with selector data (0 means that
 * the corresponding item has to be filtered, non-zero means that corresponding
 * item needs to stay).
 */
template <typename Dtype>
class FilterLayer : public Layer<Dtype> {
 public:
  explicit FilterLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline const char* type() const { return "Filter"; }
  virtual inline int MinBottomBlobs() const { return 2; }
  virtual inline int MinTopBlobs() const { return 1; }

 protected:
  /**
   * @param bottom input Blob vector (length 2+)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the inputs to be filtered @f$ x_1 @f$
   *   -# ...
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the inputs to be filtered @f$ x_K @f$
   *   -# @f$ (N \times 1 \times 1 \times 1) @f$
   *      the selector blob
   * @param top output Blob vector (length 1+)
   *   -# @f$ (S \times C \times H \times W) @f$ ()
   *        the filtered output @f$ x_1 @f$
   *        where S is the number of items
   *        that haven't been filtered
   *      @f$ (S \times C \times H \times W) @f$
   *        the filtered output @f$ x_K @f$
   *        where S is the number of items
   *        that haven't been filtered
   */
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top);

  /**
   * @brief Computes the error gradient w.r.t. the forwarded inputs.
   *
   * @param top output Blob vector (length 1+), providing the error gradient with
   *        respect to the outputs
   * @param propagate_down see Layer::Backward.
   * @param bottom input Blob vector (length 2+), into which the top error
   *        gradient is copied
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  bool first_reshape_;
  vector<int> indices_to_forward_;
};

}  // namespace caffe

#endif  // CAFFE_FILTER_LAYER_HPP_