File: test_gradient_check_util.hpp

package info (click to toggle)
caffe-contrib 1.0.0%2Bgit20180821.99bd997-2
  • links: PTS, VCS
  • area: contrib
  • in suites: buster
  • size: 16,244 kB
  • sloc: cpp: 61,579; python: 5,783; makefile: 586; sh: 562
file content (266 lines) | stat: -rw-r--r-- 11,478 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#ifndef CAFFE_TEST_GRADIENT_CHECK_UTIL_H_
#define CAFFE_TEST_GRADIENT_CHECK_UTIL_H_

#include <glog/logging.h>
#include <gtest/gtest.h>

#include <algorithm>
#include <cmath>
#include <vector>

#include "caffe/layer.hpp"
#include "caffe/net.hpp"

namespace caffe {

// The gradient checker adds a L2 normalization loss function on top of the
// top blobs, and checks the gradient.
template <typename Dtype>
class GradientChecker {
 public:
  // kink and kink_range specify an ignored nonsmooth region of the form
  // kink - kink_range <= |feature value| <= kink + kink_range,
  // which accounts for all nonsmoothness in use by caffe
  GradientChecker(const Dtype stepsize, const Dtype threshold,
      const unsigned int seed = 1701, const Dtype kink = 0.,
      const Dtype kink_range = -1)
      : stepsize_(stepsize), threshold_(threshold), seed_(seed),
        kink_(kink), kink_range_(kink_range) {}
  // Checks the gradient of a layer, with provided bottom layers and top
  // layers.
  // Note that after the gradient check, we do not guarantee that the data
  // stored in the layer parameters and the blobs are unchanged.
  void CheckGradient(Layer<Dtype>* layer, const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top, int check_bottom = -1) {
      layer->SetUp(bottom, top);
      CheckGradientSingle(layer, bottom, top, check_bottom, -1, -1);
  }
  void CheckGradientExhaustive(Layer<Dtype>* layer,
      const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top,
      int check_bottom = -1);

  // CheckGradientEltwise can be used to test layers that perform element-wise
  // computation only (e.g., neuron layers) -- where (d y_i) / (d x_j) = 0 when
  // i != j.
  void CheckGradientEltwise(Layer<Dtype>* layer,
      const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top);

  // Checks the gradient of a single output with respect to particular input
  // blob(s).  If check_bottom = i >= 0, check only the ith bottom Blob.
  // If check_bottom == -1, check everything -- all bottom Blobs and all
  // param Blobs.  Otherwise (if check_bottom < -1), check only param Blobs.
  void CheckGradientSingle(Layer<Dtype>* layer,
      const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top,
      int check_bottom, int top_id, int top_data_id, bool element_wise = false);

  // Checks the gradient of a network. This network should not have any data
  // layers or loss layers, since the function does not explicitly deal with
  // such cases yet. All input blobs and parameter blobs are going to be
  // checked, layer-by-layer to avoid numerical problems to accumulate.
  void CheckGradientNet(const Net<Dtype>& net,
      const vector<Blob<Dtype>*>& input);

 protected:
  Dtype GetObjAndGradient(const Layer<Dtype>& layer,
      const vector<Blob<Dtype>*>& top, int top_id = -1, int top_data_id = -1);
  Dtype stepsize_;
  Dtype threshold_;
  unsigned int seed_;
  Dtype kink_;
  Dtype kink_range_;
};


template <typename Dtype>
void GradientChecker<Dtype>::CheckGradientSingle(Layer<Dtype>* layer,
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top,
    int check_bottom, int top_id, int top_data_id, bool element_wise) {
  if (element_wise) {
    CHECK_EQ(0, layer->blobs().size());
    CHECK_LE(0, top_id);
    CHECK_LE(0, top_data_id);
    const int top_count = top[top_id]->count();
    for (int blob_id = 0; blob_id < bottom.size(); ++blob_id) {
      CHECK_EQ(top_count, bottom[blob_id]->count());
    }
  }
  // First, figure out what blobs we need to check against, and zero init
  // parameter blobs.
  vector<Blob<Dtype>*> blobs_to_check;
  vector<bool> propagate_down(bottom.size(), check_bottom == -1);
  for (int i = 0; i < layer->blobs().size(); ++i) {
    Blob<Dtype>* blob = layer->blobs()[i].get();
    caffe_set(blob->count(), static_cast<Dtype>(0), blob->mutable_cpu_diff());
    blobs_to_check.push_back(blob);
  }
  if (check_bottom == -1) {
    for (int i = 0; i < bottom.size(); ++i) {
      blobs_to_check.push_back(bottom[i]);
    }
  } else if (check_bottom >= 0) {
    CHECK_LT(check_bottom, bottom.size());
    blobs_to_check.push_back(bottom[check_bottom]);
    propagate_down[check_bottom] = true;
  }
  CHECK_GT(blobs_to_check.size(), 0) << "No blobs to check.";
  // Compute the gradient analytically using Backward
  Caffe::set_random_seed(seed_);
  // Ignore the loss from the layer (it's just the weighted sum of the losses
  // from the top blobs, whose gradients we may want to test individually).
  layer->Forward(bottom, top);
  // Get additional loss from the objective
  GetObjAndGradient(*layer, top, top_id, top_data_id);
  layer->Backward(top, propagate_down, bottom);
  // Store computed gradients for all checked blobs
  vector<shared_ptr<Blob<Dtype> > >
      computed_gradient_blobs(blobs_to_check.size());
  for (int blob_id = 0; blob_id < blobs_to_check.size(); ++blob_id) {
    Blob<Dtype>* current_blob = blobs_to_check[blob_id];
    computed_gradient_blobs[blob_id].reset(new Blob<Dtype>());
    computed_gradient_blobs[blob_id]->ReshapeLike(*current_blob);
    const int count = blobs_to_check[blob_id]->count();
    const Dtype* diff = blobs_to_check[blob_id]->cpu_diff();
    Dtype* computed_gradients =
        computed_gradient_blobs[blob_id]->mutable_cpu_data();
    caffe_copy(count, diff, computed_gradients);
  }
  // Compute derivative of top w.r.t. each bottom and parameter input using
  // finite differencing.
  // LOG(ERROR) << "Checking " << blobs_to_check.size() << " blobs.";
  for (int blob_id = 0; blob_id < blobs_to_check.size(); ++blob_id) {
    Blob<Dtype>* current_blob = blobs_to_check[blob_id];
    const Dtype* computed_gradients =
        computed_gradient_blobs[blob_id]->cpu_data();
    // LOG(ERROR) << "Blob " << blob_id << ": checking "
    //     << current_blob->count() << " parameters.";
    for (int feat_id = 0; feat_id < current_blob->count(); ++feat_id) {
      // For an element-wise layer, we only need to do finite differencing to
      // compute the derivative of top[top_id][top_data_id] w.r.t.
      // bottom[blob_id][i] only for i == top_data_id.  For any other
      // i != top_data_id, we know the derivative is 0 by definition, and simply
      // check that that's true.
      Dtype estimated_gradient = 0;
      Dtype positive_objective = 0;
      Dtype negative_objective = 0;
      if (!element_wise || (feat_id == top_data_id)) {
        // Do finite differencing.
        // Compute loss with stepsize_ added to input.
        current_blob->mutable_cpu_data()[feat_id] += stepsize_;
        Caffe::set_random_seed(seed_);
        layer->Forward(bottom, top);
        positive_objective =
            GetObjAndGradient(*layer, top, top_id, top_data_id);
        // Compute loss with stepsize_ subtracted from input.
        current_blob->mutable_cpu_data()[feat_id] -= stepsize_ * 2;
        Caffe::set_random_seed(seed_);
        layer->Forward(bottom, top);
        negative_objective =
            GetObjAndGradient(*layer, top, top_id, top_data_id);
        // Recover original input value.
        current_blob->mutable_cpu_data()[feat_id] += stepsize_;
        estimated_gradient = (positive_objective - negative_objective) /
            stepsize_ / 2.;
      }
      Dtype computed_gradient = computed_gradients[feat_id];
      Dtype feature = current_blob->cpu_data()[feat_id];
      // LOG(ERROR) << "debug: " << current_blob->cpu_data()[feat_id] << " "
      //     << current_blob->cpu_diff()[feat_id];
      if (kink_ - kink_range_ > fabs(feature)
          || fabs(feature) > kink_ + kink_range_) {
        // We check relative accuracy, but for too small values, we threshold
        // the scale factor by 1.
        Dtype scale = std::max<Dtype>(
            std::max(fabs(computed_gradient), fabs(estimated_gradient)),
            Dtype(1.));
        EXPECT_NEAR(computed_gradient, estimated_gradient, threshold_ * scale)
          << "debug: (top_id, top_data_id, blob_id, feat_id)="
          << top_id << "," << top_data_id << "," << blob_id << "," << feat_id
          << "; feat = " << feature
          << "; objective+ = " << positive_objective
          << "; objective- = " << negative_objective;
      }
      // LOG(ERROR) << "Feature: " << current_blob->cpu_data()[feat_id];
      // LOG(ERROR) << "computed gradient: " << computed_gradient
      //    << " estimated_gradient: " << estimated_gradient;
    }
  }
}

template <typename Dtype>
void GradientChecker<Dtype>::CheckGradientExhaustive(Layer<Dtype>* layer,
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top,
    int check_bottom) {
  layer->SetUp(bottom, top);
  CHECK_GT(top.size(), 0) << "Exhaustive mode requires at least one top blob.";
  // LOG(ERROR) << "Exhaustive Mode.";
  for (int i = 0; i < top.size(); ++i) {
    // LOG(ERROR) << "Exhaustive: blob " << i << " size " << top[i]->count();
    for (int j = 0; j < top[i]->count(); ++j) {
      // LOG(ERROR) << "Exhaustive: blob " << i << " data " << j;
      CheckGradientSingle(layer, bottom, top, check_bottom, i, j);
    }
  }
}

template <typename Dtype>
void GradientChecker<Dtype>::CheckGradientEltwise(Layer<Dtype>* layer,
    const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  layer->SetUp(bottom, top);
  CHECK_GT(top.size(), 0) << "Eltwise mode requires at least one top blob.";
  const int check_bottom = -1;
  const bool element_wise = true;
  for (int i = 0; i < top.size(); ++i) {
    for (int j = 0; j < top[i]->count(); ++j) {
      CheckGradientSingle(layer, bottom, top, check_bottom, i, j, element_wise);
    }
  }
}

template <typename Dtype>
void GradientChecker<Dtype>::CheckGradientNet(
    const Net<Dtype>& net, const vector<Blob<Dtype>*>& input) {
  const vector<shared_ptr<Layer<Dtype> > >& layers = net.layers();
  vector<vector<Blob<Dtype>*> >& bottom_vecs = net.bottom_vecs();
  vector<vector<Blob<Dtype>*> >& top_vecs = net.top_vecs();
  for (int i = 0; i < layers.size(); ++i) {
    net.Forward(input);
    LOG(ERROR) << "Checking gradient for " << layers[i]->layer_param().name();
    CheckGradientExhaustive(*(layers[i].get()), bottom_vecs[i], top_vecs[i]);
  }
}

template <typename Dtype>
Dtype GradientChecker<Dtype>::GetObjAndGradient(const Layer<Dtype>& layer,
    const vector<Blob<Dtype>*>& top, int top_id, int top_data_id) {
  Dtype loss = 0;
  if (top_id < 0) {
    // the loss will be half of the sum of squares of all outputs
    for (int i = 0; i < top.size(); ++i) {
      Blob<Dtype>* top_blob = top[i];
      const Dtype* top_blob_data = top_blob->cpu_data();
      Dtype* top_blob_diff = top_blob->mutable_cpu_diff();
      int count = top_blob->count();
      for (int j = 0; j < count; ++j) {
        loss += top_blob_data[j] * top_blob_data[j];
      }
      // set the diff: simply the data.
      caffe_copy(top_blob->count(), top_blob_data, top_blob_diff);
    }
    loss /= 2.;
  } else {
    // the loss will be the top_data_id-th element in the top_id-th blob.
    for (int i = 0; i < top.size(); ++i) {
      Blob<Dtype>* top_blob = top[i];
      Dtype* top_blob_diff = top_blob->mutable_cpu_diff();
      caffe_set(top_blob->count(), Dtype(0), top_blob_diff);
    }
    const Dtype loss_weight = 2;
    loss = top[top_id]->cpu_data()[top_data_id] * loss_weight;
    top[top_id]->mutable_cpu_diff()[top_data_id] = loss_weight;
  }
  return loss;
}

}  // namespace caffe

#endif  // CAFFE_TEST_GRADIENT_CHECK_UTIL_H_