1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
#include <Python.h> // NOLINT(build/include_alpha)
// Produce deprecation warnings (needs to come before arrayobject.h inclusion).
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <boost/make_shared.hpp>
#include <boost/python.hpp>
#include <boost/python/raw_function.hpp>
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include <numpy/arrayobject.h>
// these need to be included after boost on OS X
#include <string> // NOLINT(build/include_order)
#include <vector> // NOLINT(build/include_order)
#include <fstream> // NOLINT
#include "caffe/caffe.hpp"
#include "caffe/layers/memory_data_layer.hpp"
#include "caffe/layers/python_layer.hpp"
#include "caffe/sgd_solvers.hpp"
// Temporary solution for numpy < 1.7 versions: old macro, no promises.
// You're strongly advised to upgrade to >= 1.7.
#ifndef NPY_ARRAY_C_CONTIGUOUS
#define NPY_ARRAY_C_CONTIGUOUS NPY_C_CONTIGUOUS
#define PyArray_SetBaseObject(arr, x) (PyArray_BASE(arr) = (x))
#endif
/* Fix to avoid registration warnings in pycaffe (#3960) */
#define BP_REGISTER_SHARED_PTR_TO_PYTHON(PTR) do { \
const boost::python::type_info info = \
boost::python::type_id<shared_ptr<PTR > >(); \
const boost::python::converter::registration* reg = \
boost::python::converter::registry::query(info); \
if (reg == NULL) { \
bp::register_ptr_to_python<shared_ptr<PTR > >(); \
} else if ((*reg).m_to_python == NULL) { \
bp::register_ptr_to_python<shared_ptr<PTR > >(); \
} \
} while (0)
namespace bp = boost::python;
namespace caffe {
// For Python, for now, we'll just always use float as the type.
typedef float Dtype;
const int NPY_DTYPE = NPY_FLOAT32;
// Selecting mode.
void set_mode_cpu() { Caffe::set_mode(Caffe::CPU); }
void set_mode_gpu() { Caffe::set_mode(Caffe::GPU); }
void InitLog() {
::google::InitGoogleLogging("");
::google::InstallFailureSignalHandler();
}
void InitLogLevel(int level) {
FLAGS_minloglevel = level;
InitLog();
}
void InitLogLevelPipe(int level, bool stderr) {
FLAGS_minloglevel = level;
FLAGS_logtostderr = stderr;
InitLog();
}
void Log(const string& s) {
LOG(INFO) << s;
}
void set_random_seed(unsigned int seed) { Caffe::set_random_seed(seed); }
// For convenience, check that input files can be opened, and raise an
// exception that boost will send to Python if not (caffe could still crash
// later if the input files are disturbed before they are actually used, but
// this saves frustration in most cases).
static void CheckFile(const string& filename) {
std::ifstream f(filename.c_str());
if (!f.good()) {
f.close();
throw std::runtime_error("Could not open file " + filename);
}
f.close();
}
void CheckContiguousArray(PyArrayObject* arr, string name,
int channels, int height, int width) {
if (!(PyArray_FLAGS(arr) & NPY_ARRAY_C_CONTIGUOUS)) {
throw std::runtime_error(name + " must be C contiguous");
}
if (PyArray_NDIM(arr) != 4) {
throw std::runtime_error(name + " must be 4-d");
}
if (PyArray_TYPE(arr) != NPY_FLOAT32) {
throw std::runtime_error(name + " must be float32");
}
if (PyArray_DIMS(arr)[1] != channels) {
throw std::runtime_error(name + " has wrong number of channels");
}
if (PyArray_DIMS(arr)[2] != height) {
throw std::runtime_error(name + " has wrong height");
}
if (PyArray_DIMS(arr)[3] != width) {
throw std::runtime_error(name + " has wrong width");
}
}
// Net constructor
shared_ptr<Net<Dtype> > Net_Init(string network_file, int phase,
const int level, const bp::object& stages,
const bp::object& weights) {
CheckFile(network_file);
// Convert stages from list to vector
vector<string> stages_vector;
if (!stages.is_none()) {
for (int i = 0; i < len(stages); i++) {
stages_vector.push_back(bp::extract<string>(stages[i]));
}
}
// Initialize net
shared_ptr<Net<Dtype> > net(new Net<Dtype>(network_file,
static_cast<Phase>(phase), level, &stages_vector));
// Load weights
if (!weights.is_none()) {
std::string weights_file_str = bp::extract<std::string>(weights);
CheckFile(weights_file_str);
net->CopyTrainedLayersFrom(weights_file_str);
}
return net;
}
// Legacy Net construct-and-load convenience constructor
shared_ptr<Net<Dtype> > Net_Init_Load(
string param_file, string pretrained_param_file, int phase) {
LOG(WARNING) << "DEPRECATION WARNING - deprecated use of Python interface";
LOG(WARNING) << "Use this instead (with the named \"weights\""
<< " parameter):";
LOG(WARNING) << "Net('" << param_file << "', " << phase
<< ", weights='" << pretrained_param_file << "')";
CheckFile(param_file);
CheckFile(pretrained_param_file);
shared_ptr<Net<Dtype> > net(new Net<Dtype>(param_file,
static_cast<Phase>(phase)));
net->CopyTrainedLayersFrom(pretrained_param_file);
return net;
}
void Net_Save(const Net<Dtype>& net, string filename) {
NetParameter net_param;
net.ToProto(&net_param, false);
WriteProtoToBinaryFile(net_param, filename.c_str());
}
void Net_SaveHDF5(const Net<Dtype>& net, string filename) {
net.ToHDF5(filename);
}
void Net_LoadHDF5(Net<Dtype>* net, string filename) {
net->CopyTrainedLayersFromHDF5(filename.c_str());
}
void Net_SetInputArrays(Net<Dtype>* net, bp::object data_obj,
bp::object labels_obj) {
// check that this network has an input MemoryDataLayer
shared_ptr<MemoryDataLayer<Dtype> > md_layer =
boost::dynamic_pointer_cast<MemoryDataLayer<Dtype> >(net->layers()[0]);
if (!md_layer) {
throw std::runtime_error("set_input_arrays may only be called if the"
" first layer is a MemoryDataLayer");
}
// check that we were passed appropriately-sized contiguous memory
PyArrayObject* data_arr =
reinterpret_cast<PyArrayObject*>(data_obj.ptr());
PyArrayObject* labels_arr =
reinterpret_cast<PyArrayObject*>(labels_obj.ptr());
CheckContiguousArray(data_arr, "data array", md_layer->channels(),
md_layer->height(), md_layer->width());
CheckContiguousArray(labels_arr, "labels array", 1, 1, 1);
if (PyArray_DIMS(data_arr)[0] != PyArray_DIMS(labels_arr)[0]) {
throw std::runtime_error("data and labels must have the same first"
" dimension");
}
if (PyArray_DIMS(data_arr)[0] % md_layer->batch_size() != 0) {
throw std::runtime_error("first dimensions of input arrays must be a"
" multiple of batch size");
}
md_layer->Reset(static_cast<Dtype*>(PyArray_DATA(data_arr)),
static_cast<Dtype*>(PyArray_DATA(labels_arr)),
PyArray_DIMS(data_arr)[0]);
}
Solver<Dtype>* GetSolverFromFile(const string& filename) {
SolverParameter param;
ReadSolverParamsFromTextFileOrDie(filename, ¶m);
return SolverRegistry<Dtype>::CreateSolver(param);
}
struct NdarrayConverterGenerator {
template <typename T> struct apply;
};
template <>
struct NdarrayConverterGenerator::apply<Dtype*> {
struct type {
PyObject* operator() (Dtype* data) const {
// Just store the data pointer, and add the shape information in postcall.
return PyArray_SimpleNewFromData(0, NULL, NPY_DTYPE, data);
}
const PyTypeObject* get_pytype() {
return &PyArray_Type;
}
};
};
struct NdarrayCallPolicies : public bp::default_call_policies {
typedef NdarrayConverterGenerator result_converter;
PyObject* postcall(PyObject* pyargs, PyObject* result) {
bp::object pyblob = bp::extract<bp::tuple>(pyargs)()[0];
shared_ptr<Blob<Dtype> > blob =
bp::extract<shared_ptr<Blob<Dtype> > >(pyblob);
// Free the temporary pointer-holding array, and construct a new one with
// the shape information from the blob.
void* data = PyArray_DATA(reinterpret_cast<PyArrayObject*>(result));
Py_DECREF(result);
const int num_axes = blob->num_axes();
vector<npy_intp> dims(blob->shape().begin(), blob->shape().end());
PyObject *arr_obj = PyArray_SimpleNewFromData(num_axes, dims.data(),
NPY_FLOAT32, data);
// SetBaseObject steals a ref, so we need to INCREF.
Py_INCREF(pyblob.ptr());
PyArray_SetBaseObject(reinterpret_cast<PyArrayObject*>(arr_obj),
pyblob.ptr());
return arr_obj;
}
};
bp::object Blob_Reshape(bp::tuple args, bp::dict kwargs) {
if (bp::len(kwargs) > 0) {
throw std::runtime_error("Blob.reshape takes no kwargs");
}
Blob<Dtype>* self = bp::extract<Blob<Dtype>*>(args[0]);
vector<int> shape(bp::len(args) - 1);
for (int i = 1; i < bp::len(args); ++i) {
shape[i - 1] = bp::extract<int>(args[i]);
}
self->Reshape(shape);
// We need to explicitly return None to use bp::raw_function.
return bp::object();
}
bp::object BlobVec_add_blob(bp::tuple args, bp::dict kwargs) {
if (bp::len(kwargs) > 0) {
throw std::runtime_error("BlobVec.add_blob takes no kwargs");
}
typedef vector<shared_ptr<Blob<Dtype> > > BlobVec;
BlobVec* self = bp::extract<BlobVec*>(args[0]);
vector<int> shape(bp::len(args) - 1);
for (int i = 1; i < bp::len(args); ++i) {
shape[i - 1] = bp::extract<int>(args[i]);
}
self->push_back(shared_ptr<Blob<Dtype> >(new Blob<Dtype>(shape)));
// We need to explicitly return None to use bp::raw_function.
return bp::object();
}
template<typename Dtype>
class SolverCallback: public Solver<Dtype>::Callback {
protected:
bp::object on_start_, on_gradients_ready_;
public:
SolverCallback(bp::object on_start, bp::object on_gradients_ready)
: on_start_(on_start), on_gradients_ready_(on_gradients_ready) { }
virtual void on_gradients_ready() {
on_gradients_ready_();
}
virtual void on_start() {
on_start_();
}
};
template<typename Dtype>
void Solver_add_callback(Solver<Dtype> * solver, bp::object on_start,
bp::object on_gradients_ready) {
solver->add_callback(new SolverCallback<Dtype>(on_start, on_gradients_ready));
}
// Seems boost cannot call the base method directly
void Solver_add_nccl(Solver<Dtype>* solver
#ifdef USE_NCCL
, NCCL<Dtype>* nccl
#endif
) {
#ifdef USE_NCCL
solver->add_callback(nccl);
#endif
}
void share_weights(Solver<Dtype>* solver, Net<Dtype>* net) {
net->ShareTrainedLayersWith(solver->net().get());
}
template<typename Dtype>
class NetCallback: public Net<Dtype>::Callback {
public:
explicit NetCallback(bp::object run) : run_(run) {}
protected:
virtual void run(int layer) {
run_(layer);
}
bp::object run_;
};
void Net_before_forward(Net<Dtype>* net, bp::object run) {
net->add_before_forward(new NetCallback<Dtype>(run));
}
void Net_after_forward(Net<Dtype>* net, bp::object run) {
net->add_after_forward(new NetCallback<Dtype>(run));
}
void Net_before_backward(Net<Dtype>* net, bp::object run) {
net->add_before_backward(new NetCallback<Dtype>(run));
}
void Net_after_backward(Net<Dtype>* net, bp::object run) {
net->add_after_backward(new NetCallback<Dtype>(run));
}
void Net_add_nccl(Net<Dtype>* net
#ifdef USE_NCCL
, NCCL<Dtype>* nccl
#endif
) {
#ifdef USE_NCCL
net->add_after_backward(nccl);
#endif
}
#ifndef USE_NCCL
template<typename Dtype>
class NCCL {
public:
NCCL(shared_ptr<Solver<Dtype> > solver, const string& uid) {}
};
#endif
bool HasNCCL() {
#ifdef USE_NCCL
return true;
#else
return false;
#endif
}
#ifdef USE_NCCL
bp::object NCCL_New_Uid() {
std::string uid = NCCL<Dtype>::new_uid();
#if PY_MAJOR_VERSION >= 3
// Convert std::string to bytes so that Python does not
// try to decode the string using the current locale.
// Since boost 1.53 boost.python will convert str and bytes
// to std::string but will convert std::string to str. Here we
// force a bytes object to be returned. When this object
// is passed back to the NCCL constructor boost.python will
// correctly convert the bytes to std::string automatically
PyObject* py_uid = PyBytes_FromString(uid.c_str());
return bp::object(bp::handle<>(py_uid));
#else
// automatic conversion is correct for python 2.
return bp::object(uid);
#endif
}
#endif
BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolveOverloads, Solve, 0, 1);
BOOST_PYTHON_MODULE(_caffe) {
// below, we prepend an underscore to methods that will be replaced
// in Python
bp::scope().attr("__version__") = AS_STRING(CAFFE_VERSION);
// Caffe utility functions
bp::def("init_log", &InitLog);
bp::def("init_log", &InitLogLevel);
bp::def("init_log", &InitLogLevelPipe);
bp::def("log", &Log);
bp::def("has_nccl", &HasNCCL);
bp::def("set_mode_cpu", &set_mode_cpu);
bp::def("set_mode_gpu", &set_mode_gpu);
bp::def("set_random_seed", &set_random_seed);
bp::def("set_device", &Caffe::SetDevice);
bp::def("solver_count", &Caffe::solver_count);
bp::def("set_solver_count", &Caffe::set_solver_count);
bp::def("solver_rank", &Caffe::solver_rank);
bp::def("set_solver_rank", &Caffe::set_solver_rank);
bp::def("set_multiprocess", &Caffe::set_multiprocess);
bp::def("layer_type_list", &LayerRegistry<Dtype>::LayerTypeList);
bp::class_<Net<Dtype>, shared_ptr<Net<Dtype> >, boost::noncopyable >("Net",
bp::no_init)
// Constructor
.def("__init__", bp::make_constructor(&Net_Init,
bp::default_call_policies(), (bp::arg("network_file"), "phase",
bp::arg("level")=0, bp::arg("stages")=bp::object(),
bp::arg("weights")=bp::object())))
// Legacy constructor
.def("__init__", bp::make_constructor(&Net_Init_Load))
.def("_forward", &Net<Dtype>::ForwardFromTo)
.def("_backward", &Net<Dtype>::BackwardFromTo)
.def("reshape", &Net<Dtype>::Reshape)
.def("clear_param_diffs", &Net<Dtype>::ClearParamDiffs)
// The cast is to select a particular overload.
.def("copy_from", static_cast<void (Net<Dtype>::*)(const string&)>(
&Net<Dtype>::CopyTrainedLayersFrom))
.def("share_with", &Net<Dtype>::ShareTrainedLayersWith)
.add_property("_blob_loss_weights", bp::make_function(
&Net<Dtype>::blob_loss_weights, bp::return_internal_reference<>()))
.def("_bottom_ids", bp::make_function(&Net<Dtype>::bottom_ids,
bp::return_value_policy<bp::copy_const_reference>()))
.def("_top_ids", bp::make_function(&Net<Dtype>::top_ids,
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("_blobs", bp::make_function(&Net<Dtype>::blobs,
bp::return_internal_reference<>()))
.add_property("layers", bp::make_function(&Net<Dtype>::layers,
bp::return_internal_reference<>()))
.add_property("_blob_names", bp::make_function(&Net<Dtype>::blob_names,
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("_layer_names", bp::make_function(&Net<Dtype>::layer_names,
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("_inputs", bp::make_function(&Net<Dtype>::input_blob_indices,
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("_outputs",
bp::make_function(&Net<Dtype>::output_blob_indices,
bp::return_value_policy<bp::copy_const_reference>()))
.def("_set_input_arrays", &Net_SetInputArrays,
bp::with_custodian_and_ward<1, 2, bp::with_custodian_and_ward<1, 3> >())
.def("save", &Net_Save)
.def("save_hdf5", &Net_SaveHDF5)
.def("load_hdf5", &Net_LoadHDF5)
.def("before_forward", &Net_before_forward)
.def("after_forward", &Net_after_forward)
.def("before_backward", &Net_before_backward)
.def("after_backward", &Net_after_backward)
.def("after_backward", &Net_add_nccl);
BP_REGISTER_SHARED_PTR_TO_PYTHON(Net<Dtype>);
bp::class_<Blob<Dtype>, shared_ptr<Blob<Dtype> >, boost::noncopyable>(
"Blob", bp::no_init)
.add_property("shape",
bp::make_function(
static_cast<const vector<int>& (Blob<Dtype>::*)() const>(
&Blob<Dtype>::shape),
bp::return_value_policy<bp::copy_const_reference>()))
.add_property("num", &Blob<Dtype>::num)
.add_property("channels", &Blob<Dtype>::channels)
.add_property("height", &Blob<Dtype>::height)
.add_property("width", &Blob<Dtype>::width)
.add_property("count", static_cast<int (Blob<Dtype>::*)() const>(
&Blob<Dtype>::count))
.def("reshape", bp::raw_function(&Blob_Reshape))
#ifndef CPU_ONLY
.add_property("_gpu_data_ptr",
reinterpret_cast<uintptr_t (Blob<Dtype>::*)()>(
&Blob<Dtype>::mutable_gpu_data))
.add_property("_gpu_diff_ptr",
reinterpret_cast<uintptr_t (Blob<Dtype>::*)()>(
&Blob<Dtype>::mutable_gpu_diff))
#endif
.add_property("data", bp::make_function(&Blob<Dtype>::mutable_cpu_data,
NdarrayCallPolicies()))
.add_property("diff", bp::make_function(&Blob<Dtype>::mutable_cpu_diff,
NdarrayCallPolicies()));
BP_REGISTER_SHARED_PTR_TO_PYTHON(Blob<Dtype>);
bp::class_<Layer<Dtype>, shared_ptr<PythonLayer<Dtype> >,
boost::noncopyable>("Layer", bp::init<const LayerParameter&>())
.add_property("blobs", bp::make_function(&Layer<Dtype>::blobs,
bp::return_internal_reference<>()))
.def("setup", &Layer<Dtype>::LayerSetUp)
.def("reshape", &Layer<Dtype>::Reshape)
.add_property("type", bp::make_function(&Layer<Dtype>::type));
BP_REGISTER_SHARED_PTR_TO_PYTHON(Layer<Dtype>);
bp::class_<SolverParameter>("SolverParameter", bp::no_init)
.add_property("max_iter", &SolverParameter::max_iter)
.add_property("display", &SolverParameter::display)
.add_property("layer_wise_reduce", &SolverParameter::layer_wise_reduce)
.add_property("base_lr", &SolverParameter::base_lr,
&SolverParameter::set_base_lr);
bp::class_<LayerParameter>("LayerParameter", bp::no_init);
bp::class_<Solver<Dtype>, shared_ptr<Solver<Dtype> >, boost::noncopyable>(
"Solver", bp::no_init)
.add_property("net", &Solver<Dtype>::net)
.add_property("test_nets", bp::make_function(&Solver<Dtype>::test_nets,
bp::return_internal_reference<>()))
.add_property("iter", &Solver<Dtype>::iter)
.def("add_callback", &Solver_add_callback<Dtype>)
.def("add_callback", &Solver_add_nccl)
.def("solve", static_cast<void (Solver<Dtype>::*)(const char*)>(
&Solver<Dtype>::Solve), SolveOverloads())
.def("step", &Solver<Dtype>::Step)
.def("restore", &Solver<Dtype>::Restore)
.def("snapshot", &Solver<Dtype>::Snapshot)
.def("share_weights", &share_weights)
.def("apply_update", &Solver<Dtype>::ApplyUpdate)
.add_property("param", bp::make_function(&Solver<Dtype>::param,
bp::return_internal_reference<>()));
BP_REGISTER_SHARED_PTR_TO_PYTHON(Solver<Dtype>);
bp::class_<SGDSolver<Dtype>, bp::bases<Solver<Dtype> >,
shared_ptr<SGDSolver<Dtype> >, boost::noncopyable>(
"SGDSolver", bp::init<string>())
.add_property("lr", &SGDSolver<Dtype>::GetLearningRate);
bp::class_<NesterovSolver<Dtype>, bp::bases<SGDSolver<Dtype> >,
shared_ptr<NesterovSolver<Dtype> >, boost::noncopyable>(
"NesterovSolver", bp::init<string>());
bp::class_<AdaGradSolver<Dtype>, bp::bases<SGDSolver<Dtype> >,
shared_ptr<AdaGradSolver<Dtype> >, boost::noncopyable>(
"AdaGradSolver", bp::init<string>());
bp::class_<RMSPropSolver<Dtype>, bp::bases<SGDSolver<Dtype> >,
shared_ptr<RMSPropSolver<Dtype> >, boost::noncopyable>(
"RMSPropSolver", bp::init<string>());
bp::class_<AdaDeltaSolver<Dtype>, bp::bases<SGDSolver<Dtype> >,
shared_ptr<AdaDeltaSolver<Dtype> >, boost::noncopyable>(
"AdaDeltaSolver", bp::init<string>());
bp::class_<AdamSolver<Dtype>, bp::bases<SGDSolver<Dtype> >,
shared_ptr<AdamSolver<Dtype> >, boost::noncopyable>(
"AdamSolver", bp::init<string>());
bp::def("get_solver", &GetSolverFromFile,
bp::return_value_policy<bp::manage_new_object>());
// vector wrappers for all the vector types we use
bp::class_<vector<shared_ptr<Blob<Dtype> > > >("BlobVec")
.def(bp::vector_indexing_suite<vector<shared_ptr<Blob<Dtype> > >, true>())
.def("add_blob", bp::raw_function(&BlobVec_add_blob));
bp::class_<vector<Blob<Dtype>*> >("RawBlobVec")
.def(bp::vector_indexing_suite<vector<Blob<Dtype>*>, true>());
bp::class_<vector<shared_ptr<Layer<Dtype> > > >("LayerVec")
.def(bp::vector_indexing_suite<vector<shared_ptr<Layer<Dtype> > >, true>());
bp::class_<vector<string> >("StringVec")
.def(bp::vector_indexing_suite<vector<string> >());
bp::class_<vector<int> >("IntVec")
.def(bp::vector_indexing_suite<vector<int> >());
bp::class_<vector<Dtype> >("DtypeVec")
.def(bp::vector_indexing_suite<vector<Dtype> >());
bp::class_<vector<shared_ptr<Net<Dtype> > > >("NetVec")
.def(bp::vector_indexing_suite<vector<shared_ptr<Net<Dtype> > >, true>());
bp::class_<vector<bool> >("BoolVec")
.def(bp::vector_indexing_suite<vector<bool> >());
bp::class_<NCCL<Dtype>, shared_ptr<NCCL<Dtype> >,
boost::noncopyable>("NCCL",
bp::init<shared_ptr<Solver<Dtype> >, const string&>())
#ifdef USE_NCCL
.def("new_uid", NCCL_New_Uid).staticmethod("new_uid")
.def("bcast", &NCCL<Dtype>::Broadcast)
#endif
/* NOLINT_NEXT_LINE(whitespace/semicolon) */
;
BP_REGISTER_SHARED_PTR_TO_PYTHON(NCCL<Dtype>);
bp::class_<Timer, shared_ptr<Timer>, boost::noncopyable>(
"Timer", bp::init<>())
.def("start", &Timer::Start)
.def("stop", &Timer::Stop)
.add_property("ms", &Timer::MilliSeconds);
BP_REGISTER_SHARED_PTR_TO_PYTHON(Timer);
// boost python expects a void (missing) return value, while import_array
// returns NULL for python3. import_array1() forces a void return value.
import_array1();
}
} // namespace caffe
|