1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
"""
Caffe network visualization: draw the NetParameter protobuffer.
.. note::
This requires pydot>=1.0.2, which is not included in requirements.txt since
it requires graphviz and other prerequisites outside the scope of the
Caffe.
"""
from caffe.proto import caffe_pb2
"""
pydot is not supported under python 3 and pydot2 doesn't work properly.
pydotplus works nicely (pip install pydotplus)
"""
try:
# Try to load pydotplus
import pydotplus as pydot
except ImportError:
import pydot
# Internal layer and blob styles.
LAYER_STYLE_DEFAULT = {'shape': 'record',
'fillcolor': '#6495ED',
'style': 'filled'}
NEURON_LAYER_STYLE = {'shape': 'record',
'fillcolor': '#90EE90',
'style': 'filled'}
BLOB_STYLE = {'shape': 'octagon',
'fillcolor': '#E0E0E0',
'style': 'filled'}
def get_pooling_types_dict():
"""Get dictionary mapping pooling type number to type name
"""
desc = caffe_pb2.PoolingParameter.PoolMethod.DESCRIPTOR
d = {}
for k, v in desc.values_by_name.items():
d[v.number] = k
return d
def get_edge_label(layer):
"""Define edge label based on layer type.
"""
if layer.type == 'Data':
edge_label = 'Batch ' + str(layer.data_param.batch_size)
elif layer.type == 'Convolution' or layer.type == 'Deconvolution':
edge_label = str(layer.convolution_param.num_output)
elif layer.type == 'InnerProduct':
edge_label = str(layer.inner_product_param.num_output)
else:
edge_label = '""'
return edge_label
def get_layer_lr_mult(layer):
"""Get the learning rate multipliers.
Get the learning rate multipliers for the given layer. Assumes a
Convolution/Deconvolution/InnerProduct layer.
Parameters
----------
layer : caffe_pb2.LayerParameter
A Convolution, Deconvolution, or InnerProduct layer.
Returns
-------
learning_rates : tuple of floats
the learning rate multipliers for the weights and biases.
"""
if layer.type not in ['Convolution', 'Deconvolution', 'InnerProduct']:
raise ValueError("%s layers do not have a "
"learning rate multiplier" % layer.type)
if not hasattr(layer, 'param'):
return (1.0, 1.0)
params = getattr(layer, 'param')
if len(params) == 0:
return (1.0, 1.0)
if len(params) == 1:
lrm0 = getattr(params[0],'lr_mult', 1.0)
return (lrm0, 1.0)
if len(params) == 2:
lrm0, lrm1 = [getattr(p,'lr_mult', 1.0) for p in params]
return (lrm0, lrm1)
raise ValueError("Could not parse the learning rate multiplier")
def get_layer_label(layer, rankdir, display_lrm=False):
"""Define node label based on layer type.
Parameters
----------
layer : caffe_pb2.LayerParameter
rankdir : {'LR', 'TB', 'BT'}
Direction of graph layout.
display_lrm : boolean, optional
If True include the learning rate multipliers in the label (default is
False).
Returns
-------
node_label : string
A label for the current layer
"""
if rankdir in ('TB', 'BT'):
# If graph orientation is vertical, horizontal space is free and
# vertical space is not; separate words with spaces
separator = ' '
else:
# If graph orientation is horizontal, vertical space is free and
# horizontal space is not; separate words with newlines
separator = r'\n'
# Initializes a list of descriptors that will be concatenated into the
# `node_label`
descriptors_list = []
# Add the layer's name
descriptors_list.append(layer.name)
# Add layer's type
if layer.type == 'Pooling':
pooling_types_dict = get_pooling_types_dict()
layer_type = '(%s %s)' % (layer.type,
pooling_types_dict[layer.pooling_param.pool])
else:
layer_type = '(%s)' % layer.type
descriptors_list.append(layer_type)
# Describe parameters for spatial operation layers
if layer.type in ['Convolution', 'Deconvolution', 'Pooling']:
if layer.type == 'Pooling':
kernel_size = layer.pooling_param.kernel_size
stride = layer.pooling_param.stride
padding = layer.pooling_param.pad
else:
kernel_size = layer.convolution_param.kernel_size[0] if \
len(layer.convolution_param.kernel_size) else 1
stride = layer.convolution_param.stride[0] if \
len(layer.convolution_param.stride) else 1
padding = layer.convolution_param.pad[0] if \
len(layer.convolution_param.pad) else 0
spatial_descriptor = separator.join([
"kernel size: %d" % kernel_size,
"stride: %d" % stride,
"pad: %d" % padding,
])
descriptors_list.append(spatial_descriptor)
# Add LR multiplier for learning layers
if display_lrm and layer.type in ['Convolution', 'Deconvolution', 'InnerProduct']:
lrm0, lrm1 = get_layer_lr_mult(layer)
if any([lrm0, lrm1]):
lr_mult = "lr mult: %.1f, %.1f" % (lrm0, lrm1)
descriptors_list.append(lr_mult)
# Concatenate the descriptors into one label
node_label = separator.join(descriptors_list)
# Outer double quotes needed or else colon characters don't parse
# properly
node_label = '"%s"' % node_label
return node_label
def choose_color_by_layertype(layertype):
"""Define colors for nodes based on the layer type.
"""
color = '#6495ED' # Default
if layertype == 'Convolution' or layertype == 'Deconvolution':
color = '#FF5050'
elif layertype == 'Pooling':
color = '#FF9900'
elif layertype == 'InnerProduct':
color = '#CC33FF'
return color
def get_pydot_graph(caffe_net, rankdir, label_edges=True, phase=None, display_lrm=False):
"""Create a data structure which represents the `caffe_net`.
Parameters
----------
caffe_net : object
rankdir : {'LR', 'TB', 'BT'}
Direction of graph layout.
label_edges : boolean, optional
Label the edges (default is True).
phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional
Include layers from this network phase. If None, include all layers.
(the default is None)
display_lrm : boolean, optional
If True display the learning rate multipliers when relevant (default is
False).
Returns
-------
pydot graph object
"""
pydot_graph = pydot.Dot(caffe_net.name if caffe_net.name else 'Net',
graph_type='digraph',
rankdir=rankdir)
pydot_nodes = {}
pydot_edges = []
for layer in caffe_net.layer:
if phase is not None:
included = False
if len(layer.include) == 0:
included = True
if len(layer.include) > 0 and len(layer.exclude) > 0:
raise ValueError('layer ' + layer.name + ' has both include '
'and exclude specified.')
for layer_phase in layer.include:
included = included or layer_phase.phase == phase
for layer_phase in layer.exclude:
included = included and not layer_phase.phase == phase
if not included:
continue
node_label = get_layer_label(layer, rankdir, display_lrm=display_lrm)
node_name = "%s_%s" % (layer.name, layer.type)
if (len(layer.bottom) == 1 and len(layer.top) == 1 and
layer.bottom[0] == layer.top[0]):
# We have an in-place neuron layer.
pydot_nodes[node_name] = pydot.Node(node_label,
**NEURON_LAYER_STYLE)
else:
layer_style = LAYER_STYLE_DEFAULT
layer_style['fillcolor'] = choose_color_by_layertype(layer.type)
pydot_nodes[node_name] = pydot.Node(node_label, **layer_style)
for bottom_blob in layer.bottom:
pydot_nodes[bottom_blob + '_blob'] = pydot.Node('%s' % bottom_blob,
**BLOB_STYLE)
edge_label = '""'
pydot_edges.append({'src': bottom_blob + '_blob',
'dst': node_name,
'label': edge_label})
for top_blob in layer.top:
pydot_nodes[top_blob + '_blob'] = pydot.Node('%s' % (top_blob))
if label_edges:
edge_label = get_edge_label(layer)
else:
edge_label = '""'
pydot_edges.append({'src': node_name,
'dst': top_blob + '_blob',
'label': edge_label})
# Now, add the nodes and edges to the graph.
for node in pydot_nodes.values():
pydot_graph.add_node(node)
for edge in pydot_edges:
pydot_graph.add_edge(
pydot.Edge(pydot_nodes[edge['src']],
pydot_nodes[edge['dst']],
label=edge['label']))
return pydot_graph
def draw_net(caffe_net, rankdir, ext='png', phase=None, display_lrm=False):
"""Draws a caffe net and returns the image string encoded using the given
extension.
Parameters
----------
caffe_net : a caffe.proto.caffe_pb2.NetParameter protocol buffer.
ext : string, optional
The image extension (the default is 'png').
phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional
Include layers from this network phase. If None, include all layers.
(the default is None)
display_lrm : boolean, optional
If True display the learning rate multipliers for the learning layers
(default is False).
Returns
-------
string :
Postscript representation of the graph.
"""
return get_pydot_graph(caffe_net, rankdir, phase=phase,
display_lrm=display_lrm).create(format=ext)
def draw_net_to_file(caffe_net, filename, rankdir='LR', phase=None, display_lrm=False):
"""Draws a caffe net, and saves it to file using the format given as the
file extension. Use '.raw' to output raw text that you can manually feed
to graphviz to draw graphs.
Parameters
----------
caffe_net : a caffe.proto.caffe_pb2.NetParameter protocol buffer.
filename : string
The path to a file where the networks visualization will be stored.
rankdir : {'LR', 'TB', 'BT'}
Direction of graph layout.
phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional
Include layers from this network phase. If None, include all layers.
(the default is None)
display_lrm : boolean, optional
If True display the learning rate multipliers for the learning layers
(default is False).
"""
ext = filename[filename.rfind('.')+1:]
with open(filename, 'wb') as fid:
fid.write(draw_net(caffe_net, rankdir, ext, phase, display_lrm))
|