1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
import unittest
import tempfile
import os
import numpy as np
import six
from collections import OrderedDict
import caffe
def simple_net_file(num_output):
"""Make a simple net prototxt, based on test_net.cpp, returning the name
of the (temporary) file."""
f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
f.write("""name: 'testnet' force_backward: true
layer { type: 'DummyData' name: 'data' top: 'data' top: 'label'
dummy_data_param { num: 5 channels: 2 height: 3 width: 4
num: 5 channels: 1 height: 1 width: 1
data_filler { type: 'gaussian' std: 1 }
data_filler { type: 'constant' } } }
layer { type: 'Convolution' name: 'conv' bottom: 'data' top: 'conv'
convolution_param { num_output: 11 kernel_size: 2 pad: 3
weight_filler { type: 'gaussian' std: 1 }
bias_filler { type: 'constant' value: 2 } }
param { decay_mult: 1 } param { decay_mult: 0 }
}
layer { type: 'InnerProduct' name: 'ip' bottom: 'conv' top: 'ip_blob'
inner_product_param { num_output: """ + str(num_output) + """
weight_filler { type: 'gaussian' std: 2.5 }
bias_filler { type: 'constant' value: -3 } } }
layer { type: 'SoftmaxWithLoss' name: 'loss' bottom: 'ip_blob' bottom: 'label'
top: 'loss' }""")
f.close()
return f.name
class TestNet(unittest.TestCase):
def setUp(self):
self.num_output = 13
net_file = simple_net_file(self.num_output)
self.net = caffe.Net(net_file, caffe.TRAIN)
# fill in valid labels
self.net.blobs['label'].data[...] = \
np.random.randint(self.num_output,
size=self.net.blobs['label'].data.shape)
os.remove(net_file)
def test_memory(self):
"""Check that holding onto blob data beyond the life of a Net is OK"""
params = sum(map(list, six.itervalues(self.net.params)), [])
blobs = self.net.blobs.values()
del self.net
# now sum everything (forcing all memory to be read)
total = 0
for p in params:
total += p.data.sum() + p.diff.sum()
for bl in blobs:
total += bl.data.sum() + bl.diff.sum()
def test_layer_dict(self):
layer_dict = self.net.layer_dict
self.assertEqual(list(layer_dict.keys()), list(self.net._layer_names))
for i, name in enumerate(self.net._layer_names):
self.assertEqual(layer_dict[name].type,
self.net.layers[i].type)
def test_forward_backward(self):
self.net.forward()
self.net.backward()
def test_forward_start_end(self):
conv_blob=self.net.blobs['conv']
ip_blob=self.net.blobs['ip_blob']
sample_data=np.random.uniform(size=conv_blob.data.shape)
sample_data=sample_data.astype(np.float32)
conv_blob.data[:]=sample_data
forward_blob=self.net.forward(start='ip',end='ip')
self.assertIn('ip_blob',forward_blob)
manual_forward=[]
for i in range(0,conv_blob.data.shape[0]):
dot=np.dot(self.net.params['ip'][0].data,
conv_blob.data[i].reshape(-1))
manual_forward.append(dot+self.net.params['ip'][1].data)
manual_forward=np.array(manual_forward)
np.testing.assert_allclose(ip_blob.data,manual_forward,rtol=1e-3,atol=1e-5)
def test_backward_start_end(self):
conv_blob=self.net.blobs['conv']
ip_blob=self.net.blobs['ip_blob']
sample_data=np.random.uniform(size=ip_blob.data.shape)
sample_data=sample_data.astype(np.float32)
ip_blob.diff[:]=sample_data
backward_blob=self.net.backward(start='ip',end='ip')
self.assertIn('conv',backward_blob)
manual_backward=[]
for i in range(0,conv_blob.data.shape[0]):
dot=np.dot(self.net.params['ip'][0].data.transpose(),
sample_data[i].reshape(-1))
manual_backward.append(dot)
manual_backward=np.array(manual_backward)
manual_backward=manual_backward.reshape(conv_blob.data.shape)
np.testing.assert_allclose(conv_blob.diff,manual_backward,rtol=1e-3,atol=1e-5)
def test_clear_param_diffs(self):
# Run a forward/backward step to have non-zero diffs
self.net.forward()
self.net.backward()
diff = self.net.params["conv"][0].diff
# Check that we have non-zero diffs
self.assertTrue(diff.max() > 0)
self.net.clear_param_diffs()
# Check that the diffs are now 0
self.assertTrue((diff == 0).all())
def test_inputs_outputs(self):
self.assertEqual(self.net.inputs, [])
self.assertEqual(self.net.outputs, ['loss'])
def test_top_bottom_names(self):
self.assertEqual(self.net.top_names,
OrderedDict([('data', ['data', 'label']),
('conv', ['conv']),
('ip', ['ip_blob']),
('loss', ['loss'])]))
self.assertEqual(self.net.bottom_names,
OrderedDict([('data', []),
('conv', ['data']),
('ip', ['conv']),
('loss', ['ip_blob', 'label'])]))
def test_save_and_read(self):
f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
f.close()
self.net.save(f.name)
net_file = simple_net_file(self.num_output)
# Test legacy constructor
# should print deprecation warning
caffe.Net(net_file, f.name, caffe.TRAIN)
# Test named constructor
net2 = caffe.Net(net_file, caffe.TRAIN, weights=f.name)
os.remove(net_file)
os.remove(f.name)
for name in self.net.params:
for i in range(len(self.net.params[name])):
self.assertEqual(abs(self.net.params[name][i].data
- net2.params[name][i].data).sum(), 0)
def test_save_hdf5(self):
f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
f.close()
self.net.save_hdf5(f.name)
net_file = simple_net_file(self.num_output)
net2 = caffe.Net(net_file, caffe.TRAIN)
net2.load_hdf5(f.name)
os.remove(net_file)
os.remove(f.name)
for name in self.net.params:
for i in range(len(self.net.params[name])):
self.assertEqual(abs(self.net.params[name][i].data
- net2.params[name][i].data).sum(), 0)
class TestLevels(unittest.TestCase):
TEST_NET = """
layer {
name: "data"
type: "DummyData"
top: "data"
dummy_data_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } }
}
layer {
name: "NoLevel"
type: "InnerProduct"
bottom: "data"
top: "NoLevel"
inner_product_param { num_output: 1 }
}
layer {
name: "Level0Only"
type: "InnerProduct"
bottom: "data"
top: "Level0Only"
include { min_level: 0 max_level: 0 }
inner_product_param { num_output: 1 }
}
layer {
name: "Level1Only"
type: "InnerProduct"
bottom: "data"
top: "Level1Only"
include { min_level: 1 max_level: 1 }
inner_product_param { num_output: 1 }
}
layer {
name: "Level>=0"
type: "InnerProduct"
bottom: "data"
top: "Level>=0"
include { min_level: 0 }
inner_product_param { num_output: 1 }
}
layer {
name: "Level>=1"
type: "InnerProduct"
bottom: "data"
top: "Level>=1"
include { min_level: 1 }
inner_product_param { num_output: 1 }
}
"""
def setUp(self):
self.f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
self.f.write(self.TEST_NET)
self.f.close()
def tearDown(self):
os.remove(self.f.name)
def check_net(self, net, blobs):
net_blobs = [b for b in net.blobs.keys() if 'data' not in b]
self.assertEqual(net_blobs, blobs)
def test_0(self):
net = caffe.Net(self.f.name, caffe.TEST)
self.check_net(net, ['NoLevel', 'Level0Only', 'Level>=0'])
def test_1(self):
net = caffe.Net(self.f.name, caffe.TEST, level=1)
self.check_net(net, ['NoLevel', 'Level1Only', 'Level>=0', 'Level>=1'])
class TestStages(unittest.TestCase):
TEST_NET = """
layer {
name: "data"
type: "DummyData"
top: "data"
dummy_data_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } }
}
layer {
name: "A"
type: "InnerProduct"
bottom: "data"
top: "A"
include { stage: "A" }
inner_product_param { num_output: 1 }
}
layer {
name: "B"
type: "InnerProduct"
bottom: "data"
top: "B"
include { stage: "B" }
inner_product_param { num_output: 1 }
}
layer {
name: "AorB"
type: "InnerProduct"
bottom: "data"
top: "AorB"
include { stage: "A" }
include { stage: "B" }
inner_product_param { num_output: 1 }
}
layer {
name: "AandB"
type: "InnerProduct"
bottom: "data"
top: "AandB"
include { stage: "A" stage: "B" }
inner_product_param { num_output: 1 }
}
"""
def setUp(self):
self.f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
self.f.write(self.TEST_NET)
self.f.close()
def tearDown(self):
os.remove(self.f.name)
def check_net(self, net, blobs):
net_blobs = [b for b in net.blobs.keys() if 'data' not in b]
self.assertEqual(net_blobs, blobs)
def test_A(self):
net = caffe.Net(self.f.name, caffe.TEST, stages=['A'])
self.check_net(net, ['A', 'AorB'])
def test_B(self):
net = caffe.Net(self.f.name, caffe.TEST, stages=['B'])
self.check_net(net, ['B', 'AorB'])
def test_AandB(self):
net = caffe.Net(self.f.name, caffe.TEST, stages=['A', 'B'])
self.check_net(net, ['A', 'B', 'AorB', 'AandB'])
class TestAllInOne(unittest.TestCase):
TEST_NET = """
layer {
name: "train_data"
type: "DummyData"
top: "data"
top: "label"
dummy_data_param {
shape { dim: 1 dim: 1 dim: 10 dim: 10 }
shape { dim: 1 dim: 1 dim: 1 dim: 1 }
}
include { phase: TRAIN stage: "train" }
}
layer {
name: "val_data"
type: "DummyData"
top: "data"
top: "label"
dummy_data_param {
shape { dim: 1 dim: 1 dim: 10 dim: 10 }
shape { dim: 1 dim: 1 dim: 1 dim: 1 }
}
include { phase: TEST stage: "val" }
}
layer {
name: "deploy_data"
type: "Input"
top: "data"
input_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } }
include { phase: TEST stage: "deploy" }
}
layer {
name: "ip"
type: "InnerProduct"
bottom: "data"
top: "ip"
inner_product_param { num_output: 2 }
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
include: { phase: TRAIN stage: "train" }
include: { phase: TEST stage: "val" }
}
layer {
name: "pred"
type: "Softmax"
bottom: "ip"
top: "pred"
include: { phase: TEST stage: "deploy" }
}
"""
def setUp(self):
self.f = tempfile.NamedTemporaryFile(mode='w+', delete=False)
self.f.write(self.TEST_NET)
self.f.close()
def tearDown(self):
os.remove(self.f.name)
def check_net(self, net, outputs):
self.assertEqual(list(net.blobs['data'].shape), [1,1,10,10])
self.assertEqual(net.outputs, outputs)
def test_train(self):
net = caffe.Net(self.f.name, caffe.TRAIN, stages=['train'])
self.check_net(net, ['loss'])
def test_val(self):
net = caffe.Net(self.f.name, caffe.TEST, stages=['val'])
self.check_net(net, ['loss'])
def test_deploy(self):
net = caffe.Net(self.f.name, caffe.TEST, stages=['deploy'])
self.check_net(net, ['pred'])
|