File: bnll.md

package info (click to toggle)
caffe 1.0.0%2Bgit20180821.99bd997-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 16,288 kB
  • sloc: cpp: 61,586; python: 5,783; makefile: 599; sh: 559
file content (25 lines) | stat: -rw-r--r-- 823 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
---
title: BNLL Layer
---

# BNLL Layer

* Layer type: `BNLL`
* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BNLLLayer.html)
* Header: [`./include/caffe/layers/bnll_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bnll_layer.hpp)
* CPU implementation: [`./src/caffe/layers/bnll_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cpp)
* CUDA GPU implementation: [`./src/caffe/layers/bnll_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cu)

The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x.

## Parameters
No parameters.

## Sample

      layer {
        name: "layer"
        bottom: "in"
        top: "out"
        type: BNLL
      }