File: parse_log.py

package info (click to toggle)
caffe 1.0.0%2Bgit20180821.99bd997-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 16,288 kB
  • sloc: cpp: 61,586; python: 5,783; makefile: 599; sh: 559
file content (210 lines) | stat: -rwxr-xr-x 7,136 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python

"""
Parse training log

Evolved from parse_log.sh
"""

import os
import re
import extract_seconds
import argparse
import csv
from collections import OrderedDict


def parse_log(path_to_log):
    """Parse log file
    Returns (train_dict_list, test_dict_list)

    train_dict_list and test_dict_list are lists of dicts that define the table
    rows
    """

    regex_iteration = re.compile('Iteration (\d+)')
    regex_train_output = re.compile('Train net output #(\d+): (\S+) = ([\.\deE+-]+)')
    regex_test_output = re.compile('Test net output #(\d+): (\S+) = ([\.\deE+-]+)')
    regex_learning_rate = re.compile('lr = ([-+]?[0-9]*\.?[0-9]+([eE]?[-+]?[0-9]+)?)')

    # Pick out lines of interest
    iteration = -1
    learning_rate = float('NaN')
    train_dict_list = []
    test_dict_list = []
    train_row = None
    test_row = None

    logfile_year = extract_seconds.get_log_created_year(path_to_log)
    with open(path_to_log) as f:
        start_time = extract_seconds.get_start_time(f, logfile_year)
        last_time = start_time

        for line in f:
            iteration_match = regex_iteration.search(line)
            if iteration_match:
                iteration = float(iteration_match.group(1))
            if iteration == -1:
                # Only start parsing for other stuff if we've found the first
                # iteration
                continue

            try:
                time = extract_seconds.extract_datetime_from_line(line,
                                                                  logfile_year)
            except ValueError:
                # Skip lines with bad formatting, for example when resuming solver
                continue

            # if it's another year
            if time.month < last_time.month:
                logfile_year += 1
                time = extract_seconds.extract_datetime_from_line(line, logfile_year)
            last_time = time

            seconds = (time - start_time).total_seconds()

            learning_rate_match = regex_learning_rate.search(line)
            if learning_rate_match:
                learning_rate = float(learning_rate_match.group(1))

            train_dict_list, train_row = parse_line_for_net_output(
                regex_train_output, train_row, train_dict_list,
                line, iteration, seconds, learning_rate
            )
            test_dict_list, test_row = parse_line_for_net_output(
                regex_test_output, test_row, test_dict_list,
                line, iteration, seconds, learning_rate
            )

    fix_initial_nan_learning_rate(train_dict_list)
    fix_initial_nan_learning_rate(test_dict_list)

    return train_dict_list, test_dict_list


def parse_line_for_net_output(regex_obj, row, row_dict_list,
                              line, iteration, seconds, learning_rate):
    """Parse a single line for training or test output

    Returns a a tuple with (row_dict_list, row)
    row: may be either a new row or an augmented version of the current row
    row_dict_list: may be either the current row_dict_list or an augmented
    version of the current row_dict_list
    """

    output_match = regex_obj.search(line)
    if output_match:
        if not row or row['NumIters'] != iteration:
            # Push the last row and start a new one
            if row:
                # If we're on a new iteration, push the last row
                # This will probably only happen for the first row; otherwise
                # the full row checking logic below will push and clear full
                # rows
                row_dict_list.append(row)

            row = OrderedDict([
                ('NumIters', iteration),
                ('Seconds', seconds),
                ('LearningRate', learning_rate)
            ])

        # output_num is not used; may be used in the future
        # output_num = output_match.group(1)
        output_name = output_match.group(2)
        output_val = output_match.group(3)
        row[output_name] = float(output_val)

    if row and len(row_dict_list) >= 1 and len(row) == len(row_dict_list[0]):
        # The row is full, based on the fact that it has the same number of
        # columns as the first row; append it to the list
        row_dict_list.append(row)
        row = None

    return row_dict_list, row


def fix_initial_nan_learning_rate(dict_list):
    """Correct initial value of learning rate

    Learning rate is normally not printed until after the initial test and
    training step, which means the initial testing and training rows have
    LearningRate = NaN. Fix this by copying over the LearningRate from the
    second row, if it exists.
    """

    if len(dict_list) > 1:
        dict_list[0]['LearningRate'] = dict_list[1]['LearningRate']


def save_csv_files(logfile_path, output_dir, train_dict_list, test_dict_list,
                   delimiter=',', verbose=False):
    """Save CSV files to output_dir

    If the input log file is, e.g., caffe.INFO, the names will be
    caffe.INFO.train and caffe.INFO.test
    """

    log_basename = os.path.basename(logfile_path)
    train_filename = os.path.join(output_dir, log_basename + '.train')
    write_csv(train_filename, train_dict_list, delimiter, verbose)

    test_filename = os.path.join(output_dir, log_basename + '.test')
    write_csv(test_filename, test_dict_list, delimiter, verbose)


def write_csv(output_filename, dict_list, delimiter, verbose=False):
    """Write a CSV file
    """

    if not dict_list:
        if verbose:
            print('Not writing %s; no lines to write' % output_filename)
        return

    dialect = csv.excel
    dialect.delimiter = delimiter

    with open(output_filename, 'w') as f:
        dict_writer = csv.DictWriter(f, fieldnames=dict_list[0].keys(),
                                     dialect=dialect)
        dict_writer.writeheader()
        dict_writer.writerows(dict_list)
    if verbose:
        print 'Wrote %s' % output_filename


def parse_args():
    description = ('Parse a Caffe training log into two CSV files '
                   'containing training and testing information')
    parser = argparse.ArgumentParser(description=description)

    parser.add_argument('logfile_path',
                        help='Path to log file')

    parser.add_argument('output_dir',
                        help='Directory in which to place output CSV files')

    parser.add_argument('--verbose',
                        action='store_true',
                        help='Print some extra info (e.g., output filenames)')

    parser.add_argument('--delimiter',
                        default=',',
                        help=('Column delimiter in output files '
                              '(default: \'%(default)s\')'))

    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    train_dict_list, test_dict_list = parse_log(args.logfile_path)
    save_csv_files(args.logfile_path, args.output_dir, train_dict_list,
                   test_dict_list, delimiter=args.delimiter, verbose=args.verbose)


if __name__ == '__main__':
    main()