File: plot_training_log.py.example

package info (click to toggle)
caffe 1.0.0%2Bgit20180821.99bd997-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 16,288 kB
  • sloc: cpp: 61,586; python: 5,783; makefile: 599; sh: 559
file content (184 lines) | stat: -rwxr-xr-x 6,863 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
import inspect
import os
import random
import sys
import matplotlib.cm as cmx
import matplotlib.colors as colors
import matplotlib.pyplot as plt
import matplotlib.legend as lgd
import matplotlib.markers as mks

def get_log_parsing_script():
    dirname = os.path.dirname(os.path.abspath(inspect.getfile(
        inspect.currentframe())))
    return dirname + '/parse_log.sh'

def get_log_file_suffix():
    return '.log'

def get_chart_type_description_separator():
    return '  vs. '

def is_x_axis_field(field):
    x_axis_fields = ['Iters', 'Seconds']
    return field in x_axis_fields

def create_field_index():
    train_key = 'Train'
    test_key = 'Test'
    field_index = {train_key:{'Iters':0, 'Seconds':1, train_key + ' loss':2,
                              train_key + ' learning rate':3},
                   test_key:{'Iters':0, 'Seconds':1, test_key + ' accuracy':2,
                             test_key + ' loss':3}}
    fields = set()
    for data_file_type in field_index.keys():
        fields = fields.union(set(field_index[data_file_type].keys()))
    fields = list(fields)
    fields.sort()
    return field_index, fields

def get_supported_chart_types():
    field_index, fields = create_field_index()
    num_fields = len(fields)
    supported_chart_types = []
    for i in xrange(num_fields):
        if not is_x_axis_field(fields[i]):
            for j in xrange(num_fields):
                if i != j and is_x_axis_field(fields[j]):
                    supported_chart_types.append('%s%s%s' % (
                        fields[i], get_chart_type_description_separator(),
                        fields[j]))
    return supported_chart_types

def get_chart_type_description(chart_type):
    supported_chart_types = get_supported_chart_types()
    chart_type_description = supported_chart_types[chart_type]
    return chart_type_description

def get_data_file_type(chart_type):
    description = get_chart_type_description(chart_type)
    data_file_type = description.split()[0]
    return data_file_type

def get_data_file(chart_type, path_to_log):
    return (os.path.basename(path_to_log) + '.' +
            get_data_file_type(chart_type).lower())

def get_field_descriptions(chart_type):
    description = get_chart_type_description(chart_type).split(
        get_chart_type_description_separator())
    y_axis_field = description[0]
    x_axis_field = description[1]
    return x_axis_field, y_axis_field

def get_field_indices(x_axis_field, y_axis_field):
    data_file_type = get_data_file_type(chart_type)
    fields = create_field_index()[0][data_file_type]
    return fields[x_axis_field], fields[y_axis_field]

def load_data(data_file, field_idx0, field_idx1):
    data = [[], []]
    with open(data_file, 'r') as f:
        for line in f:
            line = line.strip()
            if line[0] != '#':
                fields = line.split()
                data[0].append(float(fields[field_idx0].strip()))
                data[1].append(float(fields[field_idx1].strip()))
    return data

def random_marker():
    markers = mks.MarkerStyle.markers
    num = len(markers.keys())
    idx = random.randint(0, num - 1)
    return markers.keys()[idx]

def get_data_label(path_to_log):
    label = path_to_log[path_to_log.rfind('/')+1 : path_to_log.rfind(
        get_log_file_suffix())]
    return label

def get_legend_loc(chart_type):
    x_axis, y_axis = get_field_descriptions(chart_type)
    loc = 'lower right'
    if y_axis.find('accuracy') != -1:
        pass
    if y_axis.find('loss') != -1 or y_axis.find('learning rate') != -1:
        loc = 'upper right'
    return loc

def plot_chart(chart_type, path_to_png, path_to_log_list):
    for path_to_log in path_to_log_list:
        os.system('%s %s' % (get_log_parsing_script(), path_to_log))
        data_file = get_data_file(chart_type, path_to_log)
        x_axis_field, y_axis_field = get_field_descriptions(chart_type)
        x, y = get_field_indices(x_axis_field, y_axis_field)
        data = load_data(data_file, x, y)
        ## TODO: more systematic color cycle for lines
        color = [random.random(), random.random(), random.random()]
        label = get_data_label(path_to_log)
        linewidth = 0.75
        ## If there too many datapoints, do not use marker.
##        use_marker = False
        use_marker = True
        if not use_marker:
            plt.plot(data[0], data[1], label = label, color = color,
                     linewidth = linewidth)
        else:
            marker = random_marker()
            plt.plot(data[0], data[1], label = label, color = color,
                     marker = marker, linewidth = linewidth)
    legend_loc = get_legend_loc(chart_type)
    plt.legend(loc = legend_loc, ncol = 1) # ajust ncol to fit the space
    plt.title(get_chart_type_description(chart_type))
    plt.xlabel(x_axis_field)
    plt.ylabel(y_axis_field)
    plt.savefig(path_to_png)
    plt.show()

def print_help():
    print """This script mainly serves as the basis of your customizations.
Customization is a must.
You can copy, paste, edit them in whatever way you want.
Be warned that the fields in the training log may change in the future.
You had better check the data files and change the mapping from field name to
 field index in create_field_index before designing your own plots.
Usage:
    ./plot_training_log.py chart_type[0-%s] /where/to/save.png /path/to/first.log ...
Notes:
    1. Supporting multiple logs.
    2. Log file name must end with the lower-cased "%s".
Supported chart types:""" % (len(get_supported_chart_types()) - 1,
                             get_log_file_suffix())
    supported_chart_types = get_supported_chart_types()
    num = len(supported_chart_types)
    for i in xrange(num):
        print '    %d: %s' % (i, supported_chart_types[i])
    sys.exit()

def is_valid_chart_type(chart_type):
    return chart_type >= 0 and chart_type < len(get_supported_chart_types())

if __name__ == '__main__':
    if len(sys.argv) < 4:
        print_help()
    else:
        chart_type = int(sys.argv[1])
        if not is_valid_chart_type(chart_type):
            print '%s is not a valid chart type.' % chart_type
            print_help()
        path_to_png = sys.argv[2]
        if not path_to_png.endswith('.png'):
            print 'Path must ends with png' % path_to_png
            sys.exit()
        path_to_logs = sys.argv[3:]
        for path_to_log in path_to_logs:
            if not os.path.exists(path_to_log):
                print 'Path does not exist: %s' % path_to_log
                sys.exit()
            if not path_to_log.endswith(get_log_file_suffix()):
                print 'Log file must end in %s.' % get_log_file_suffix()
                print_help()
        ## plot_chart accpets multiple path_to_logs
        plot_chart(chart_type, path_to_png, path_to_logs)