File: infogainloss.md

package info (click to toggle)
caffe 1.0.0~rc4-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,284 kB
  • sloc: cpp: 60,050; python: 5,649; makefile: 616; sh: 559
file content (24 lines) | stat: -rw-r--r-- 1,218 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
---
title: Infogain Loss Layer
---

# Infogain Loss Layer

* Layer type: `InfogainLoss`
* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InfogainLossLayer.html)
* Header: [`./include/caffe/layers/infogain_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/infogain_loss_layer.hpp)
* CPU implementation: [`./src/caffe/layers/infogain_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/infogain_loss_layer.cpp)
* CUDA GPU implementation: [`./src/caffe/layers/infogain_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/infogain_loss_layer.cu)

A generalization of [MultinomialLogisticLossLayer](layers/multinomiallogisticloss.md) that takes an "information gain" (infogain) matrix specifying the "value" of all label pairs.

Equivalent to the [MultinomialLogisticLossLayer](layers/multinomiallogisticloss.md) if the infogain matrix is the identity.

## Parameters

* Parameters (`Parameter infogain_param`)
* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto):

{% highlight Protobuf %}
{% include proto/InfogainLossParameter.txt %}
{% endhighlight %}