1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
|
"""Implements the Model class."""
# CONTINUE: Fixed non-unique names when reactions or species are added.
# If we are running the unit tests.
if __name__ == '__main__':
import sys
sys.path.insert(1, '..')
from Utilities import getUniqueName
from Reaction import Reaction
from TimeEvent import TimeEvent
from TriggerEvent import TriggerEvent
from Value import Value
from ParameterEvaluation import evaluateModel, evaluateModelInhomogeneous,\
KineticLawDecorator, KineticLawDecoratorMathematica, getParameters,\
getIdentifiers
from fio.XmlWriter import XmlWriter
from fio.MathematicaWriter import MathematicaWriter, mathematicaForm, mathematicaCoefficient
import math
class Model:
"""The model describes the compartments, species, and reactions."""
# CONTINUE: Maybe I shouldn't store the id here.
def __init__(self):
"""Make an empty model.
Member data:
- id: An optional identifier for the model.
- name: An optional descriptive name for the model. Used for
information only.
- compartments: A dictionary of compartments. The keys are the
compartment identifiers.
- species: A dictionary of species. The keys are the species
identifiers.
- speciesIdentifiers: A list of the species identifiers.
- reactions: A list of reactions.
- timeEvents: A list of the time events.
- triggerEvents: A list of the trigger events.
- parameters: A dictionary of parameters. The keys are the parameter
identifiers.
CONTINUE:
Note that compartments are represented, but not really used. They are
not needed to identify species; to conform with SBML the species
identifiers in a model must be unique. Because we only use substance
units, we don't need to track the size or spatial dimensions of the
compartments."""
self.id = ''
self.name = ''
self.compartments = {}
self.species = {}
self.speciesIdentifiers = []
self.reactions = []
self.timeEvents = []
self.triggerEvents = []
self.parameters = {}
def hasErrors(self, isDiscrete):
"""Return None if the model is valid. Otherwise return an error
message. An empty model is not considered to be valid."""
if not self.id:
return 'Empty identifier.'
# Check the compartments.
# Note that there may be no compartments.
for id in self.compartments:
if not id:
return 'Compartment has an empty identifier.'
error = self.compartments[id].hasErrors()
if error:
return 'Error in compartment ' + id + '.\n' + error
# Check the number of species.
if len(self.species) < 1:
return 'There are no species.'
if len(self.speciesIdentifiers) != len(self.species):
return 'Internal error: len(self.speciesIdentifiers) != len(self.species).'
# Check that there is at least one reaction or event.
if not self.reactions and not self.timeEvents and\
not self.triggerEvents:
return 'There are no reactions or events.'
# Check the species.
compartmentIdentifiers = self.compartments.keys()
for id in self.speciesIdentifiers:
error = self.species[id].hasErrors(compartmentIdentifiers)
if error:
return 'Error in species ' + id + '.\n' + error
# Check that the species identifiers are unique.
if len(set(self.speciesIdentifiers)) != len(self.speciesIdentifiers):
return 'The species identifiers are not unique.'
# Check the reactions.
for reaction in self.reactions:
error = reaction.hasErrors(self.speciesIdentifiers, isDiscrete)
if error:
return 'Error in reaction ' + reaction.id + '.\n' + error
# Check that the reaction identifiers are unique.
reactionIdentifiers = [x.id for x in self.reactions]
if len(set(reactionIdentifiers)) != len(reactionIdentifiers):
return 'The reaction identifiers are not unique.'
# Check the time events.
for event in self.timeEvents:
error = event.hasErrors()
if error:
return 'Error in time event ' + event.id + '.\n' + error
# Check that the identifiers are unique.
timeEventIdentifiers = [x.id for x in self.timeEvents]
if len(set(timeEventIdentifiers)) != len(timeEventIdentifiers):
return 'The time event identifiers are not unique.'
# Check the trigger events.
for event in self.triggerEvents:
error = event.hasErrors()
if error:
return 'Error in trigger event ' + event.id + '.\n' + error
# Check that the identifiers are unique.
triggerEventIdentifiers = [x.id for x in self.triggerEvents]
if len(set(triggerEventIdentifiers)) != len(triggerEventIdentifiers):
return 'The trigger event identifiers are not unique.'
# Check the parameters.
for id in self.parameters:
error = self.parameters[id].hasErrors()
if error:
return 'Error in parameter ' + id + '.\n' + error
# Check that the parameter identifiers are unique.
parameterIdentifiers = self.parameters.keys()
if len(set(parameterIdentifiers)) != len(parameterIdentifiers):
return 'The parameter identifiers are not unique.'
# Check that all model identifiers are unique.
identifiers = compartmentIdentifiers + self.speciesIdentifiers +\
reactionIdentifiers + timeEventIdentifiers +\
triggerEventIdentifiers + parameterIdentifiers
if len(set(identifiers)) != len(identifiers):
# CONTINUE: Report the ones that are not unique.
return 'The model identifiers are not unique.'
return None
# CONTINUE REMOVE
#def getReactionIdentifiers(self):
# return [r.id for r in self.reactions]
def hasOnlyMassActionKineticLaws(self):
return not False in \
[reaction.massAction for reaction in self.reactions]
def hasIntegerInitialAmounts(self):
"""Return True if all of the initial amounts are integer-valued."""
for id in self.species:
value = self.species[id].initialAmountValue
if value <= 2**53 and int(value) != value:
return False
return True
def evaluate(self):
"""Evaluate the parameters, the species initial amounts, and the
reaction propensities for the mass action kinetic laws. Return
None if successful. Otherwise return an error message."""
return evaluateModel(self)
def evaluateInhomogeneous(self):
"""Evaluate the parameters and the species initial amounts. Return
None if successful. Otherwise return an error message."""
return evaluateModelInhomogeneous(self)
# CONTINUE: Adapt.
def setVolume(self, volume, doUpdate):
"""Set the volume. Update the mass action propensities if indicated."""
# Disable until adapted.
assert False
assert volume > 0
assert doUpdate == True or doUpdate == False
if doUpdate:
ratio = self.volume / volume
for reaction in self.reactions:
if reaction.massAction:
order = reaction.order()
if order >= 2:
factor = ratio
for i in range(order-2):
factor *= ratio
reaction.propensity += '*' + str(factor)
reaction.simplify()
self.volume = volume
def addReverseReactions(self):
"""If this model has any reactions that have been marked as reversible,
then add the reverse reaction. Leave the propensities for these
reactions blank."""
for r in self.reactions:
if r.reversible:
r.reversible = False
id = getUniqueName(r.id + '_reverse',
[x.id for x in self.reactions])
if r.name:
name = r.name + ' reverse'
else:
name = ''
# Use the new identifier and name. Switch the reactants and
# products. Leave the propensity blank.
self.reactions.append(Reaction(id, name, r.products[:],
r.reactants[:], r.massAction,
''))
def makePropensitiesNumberOfReactions(self):
return 'static const std::size_t NumberOfReactions = %d;\n'\
% len(self.reactions)
def makePropensitiesConstructor(self):
result = 'Propensities(const ReactionSetType& reactionSet) :\n'
result += ' Base(reactionSet) {\n'
for i in range(len(self.reactions)):
result += ' _propensityFunctions[%d] = &Propensities::f%d;\n' % \
(i, i)
result += '}\n'
return result
def makePropensitiesMemberFunctions(self, isDiscrete):
# While pi and e are defined in the math module, they are not built-in
# C++ constants. Thus we need to temporarily add pi and e.
temporary = []
for id, value in [('pi', math.pi), ('e', math.e)]:
if not id in self.parameters and\
not id in self.speciesIdentifiers:
temporary.append(id)
v = Value('', id)
v.value = value
self.parameters[id] = v
prefix = '__p_'
decorator = KineticLawDecorator(prefix, self.parameters.keys(),
'x', self.speciesIdentifiers)
result = ''
for i in range(len(self.reactions)):
result += 'Number\n'
result += 'f%d(const PopulationType* x) const {\n' % i
# Propensity function.
if self.reactions[i].massAction:
f = self.reactions[i].makeMassActionPropensityFunction(
'x', self.speciesIdentifiers, isDiscrete)
else:
result += ' using namespace std;\n'
expression = self.reactions[i].propensity
# Parameters.
for id in getParameters(expression, self.parameters.keys()):
result += ' const Number ' + prefix + id + ' = ' +\
repr(self.parameters[id].value) + ';\n'
f = decorator(expression)
# For discrete methods, we do not check for negative populations
# in the propensity function. For continuous methods we do.
if isDiscrete:
result +=\
' return ' + f + ';\n' +\
'}\n\n'
else:
# If each of the reactant populations are positive, return the
# propensity function. Otherwise return 0.
condition = self.reactions[i].makePositiveReactantsCondition(\
'x', self.speciesIdentifiers)
result +=\
' if(' + condition + ') {\n' +\
' return ' + f + ';\n' +\
' }\n' +\
' else {\n' +\
' return 0;\n' +\
' }\n' +\
'}\n\n'
# Remove pi and e if they were temporarily added.
for id in temporary:
del self.parameters[id]
return result
def makeInhomogeneousPropensities(self, isDiscrete):
# While pi and e are defined in the math module, they are not built-in
# C++ constants. Thus we need to temporarily add pi and e.
temporary = []
for id, value in [('pi', math.pi), ('e', math.e)]:
if not id in self.parameters and\
not id in self.speciesIdentifiers:
temporary.append(id)
v = Value('', id)
v.value = value
self.parameters[id] = v
prefix = '__p_'
decorator = KineticLawDecorator(prefix, self.parameters.keys(),
'x', self.speciesIdentifiers)
lines = ['inline',
'void',
'computePropensities(std::vector<double>* propensities, const std::vector<double>& x, const double t) {',
' using namespace std;']
# The parameters.
for id in self.parameters.keys():
lines.append(' const double ' + prefix + id + ' = ' +\
repr(self.parameters[id].value) + ';')
# The propensities.
for i in range(len(self.reactions)):
reaction = self.reactions[i]
if reaction.massAction:
expression = reaction.makeInhomogeneousMassActionPropensityFunction(
'x', self.speciesIdentifiers, isDiscrete)
else:
expression = reaction.propensity
expression = decorator(expression)
# For discrete methods, we do not check for negative populations
# in the propensity function. For continuous methods we do.
assignment = ' (*propensities)[' + str(i) + '] = '
if isDiscrete:
assignment += expression + ';'
else:
assignment += 'max(0., ' + expression + ');'
lines.append(assignment)
lines.append('}')
# Remove pi and e if they were temporarily added.
for id in temporary:
del self.parameters[id]
return '\n'.join(lines)
def convertCustomToMassAction(self):
"""Try to convert the custom rate laws to mass action ones."""
parameters = self.compartments.keys() + self.parameters.keys()
for reaction in self.reactions:
reaction.convertCustomToMassAction(self.speciesIdentifiers,
parameters)
def writeXml(self, writer):
# Don't check stochastic-specific validity.
assert not self.hasErrors(False)
attributes = {}
attributes['id'] = self.id
if self.name:
attributes['name'] = self.name
writer.beginElement('model', attributes)
# listOfParameters
if self.parameters:
writer.beginElement('listOfParameters')
for id in self.parameters:
self.parameters[id].writeParameterXml(writer, id)
writer.endElement()
# listOfCompartments
# Note: Do not write the unnamed compartment.
if self.compartments:
writer.beginElement('listOfCompartments')
for id in self.compartments:
self.compartments[id].writeCompartmentXml(writer, id)
writer.endElement()
# listOfSpecies
writer.beginElement('listOfSpecies')
for id in self.speciesIdentifiers:
self.species[id].writeXml(writer, id)
writer.endElement()
# listOfReactions
if self.reactions:
writer.beginElement('listOfReactions')
for reaction in self.reactions:
reaction.writeXml(writer)
writer.endElement()
# listOfTimeEvents
if self.timeEvents:
writer.beginElement('listOfTimeEvents')
for event in self.timeEvents:
event.writeXml(writer)
writer.endElement()
# listOfTriggerEvents
if self.triggerEvents:
writer.beginElement('listOfTriggerEvents')
for event in self.triggerEvents:
event.writeXml(writer)
writer.endElement()
writer.endElement() # model
def doUseUnnamedCompartment(self):
"""Return True if a species uses the unnamed compartment."""
for id in self.species:
if self.species[id].compartment == '':
return True
return False
def writeSbml(self, writer, version):
# Don't check stochastic-specific validity.
assert not self.hasErrors(False)
assert version in range(1, 4)
# sbml
writer.beginElement\
('sbml',
{'xmlns':'http://www.sbml.org/sbml/level2/version%d' % version,
'level':'2', 'version':str(version)})
# model
attributes = {}
if self.id:
attributes['id'] = self.id
if self.name:
attributes['name'] = self.name
writer.beginElement('model', attributes)
# listOfUnitDefinitions
writer.beginElement('listOfUnitDefinitions')
writer.beginElement('unitDefinition', {'id':'substance'})
writer.beginElement('listOfUnits')
writer.writeEmptyElement('unit', {'kind':'item'})
writer.endElement()
writer.endElement()
writer.endElement()
# listOfCompartments
# Note that there must be either a named or unnamed compartment in use.
writer.beginElement('listOfCompartments')
# Write the named compartments.
for id in self.compartments:
self.compartments[id].writeCompartmentSbml(writer, id)
unnamedCompartment = ''
# If any of the species use the unnamed compartment.
if self.doUseUnnamedCompartment():
# Get a unique name.
unnamedCompartment = getUniqueName('Unnamed',
self.compartments.keys())
# Write the unnamed compartment.
c = Value('', '1')
c.value = 1.
c.writeCompartmentSbml(writer, unnamedCompartment)
writer.endElement()
# listOfSpecies
writer.beginElement('listOfSpecies')
for id in self.speciesIdentifiers:
self.species[id].writeSbml(writer, id, unnamedCompartment)
writer.endElement()
# listOfParameters
if self.parameters:
writer.beginElement('listOfParameters')
for id in self.parameters:
self.parameters[id].writeParameterSbml(writer, id)
writer.endElement()
# listOfReactions
writer.beginElement('listOfReactions')
n = 0
for reaction in self.reactions:
reaction.writeSbml(writer)
n += 1
writer.endElement()
# CONTINUE: Add events.
writer.endElement() # model
writer.endElement() # sbml
def writeCmdl(self, outputFile):
"""Write a CMDL file that Dizzy can import."""
# The parameter values.
for id in self.parameters:
outputFile.write(id + '=' + str(self.parameters[id].value) + ';\n')
# The species and initial amounts.
for id in self.species:
outputFile.write(id + '='
+ str(self.species[id].initialAmountValue) + ';\n')
for r in self.reactions:
outputFile.write(r.id + ',' + r.stringCmdl() + ',')
if r.massAction:
outputFile.write(r.propensity + ';\n')
else:
# Non-mass action propensities are enclosed in brackets.
outputFile.write('[' + r.propensity + '];\n')
# CONTINUE: Add events.
def writeMathematica(self, writer, method, recordedSpecies,
recordedReactions):
"""In writing the Mathematica file I remove all of the underscores
from the identifiers."""
assert not self.hasErrors(False)
writer.begin('Notebook')
writer.begin('Title', self.id)
writer.begin('Input', r'Needs[\"PlotLegends`\"]')
writer.end()
#
# Compartments.
#
if self.compartments:
writer.begin('Section', 'Compartments')
# CONTINUE: Instead of using the value, translate the Python
# expression to Mathematica.
writer.begin('Input',
r'\n'.join(['%s:=%s;' %
(id.replace('_',''),
mathematicaForm(self.compartments[id].value))
for id in self.compartments]))
writer.end()
writer.end() # Compartments
#
# Parameters.
#
if self.parameters:
writer.begin('Section', 'Parameters')
# CONTINUE: Instead of using the value, translate the Python
# expression to Mathematica.
writer.begin('Input',
r'\n'.join(['%s:=%s;' %
(id.replace('_',''),
mathematicaForm(self.parameters[id].value))
for id in self.parameters]))
writer.end()
writer.end() # Parameters
#
# Species.
#
writer.begin('Section', 'Species')
# species
content = r'species={'
content += r','.join([r'%s[t]' % id.replace('_','') for id in
self.speciesIdentifiers])
content += r'};\n'
# speciesIdentifiers
content += r'speciesIdentifiers=Table[Head[species[[i]]],{i,Length[species]}];\n'
# speciesEquations
content += r'speciesEquations={'
equations = []
for id in self.speciesIdentifiers:
lhs = r"%s'[t]==" % id.replace('_','')
rhs = r''
for r in self.reactions:
influence = r.influence(id)
if influence != 0:
rhs += r"%s %s'[t]" % \
(mathematicaCoefficient(influence),
r.id.replace('_',''))
if not rhs:
rhs = r'0'
equations.append(lhs+rhs)
content += r','.join(equations)
content += r'};'
# speciesInitialConditions
content += r'speciesInitialConditions={'
content += r','.join([r'%s[0]==%s' %
(id.replace('_',''),
mathematicaForm(self.species[id].initialAmountValue))
for id in self.species])
content += r'};'
writer.begin('Input', content)
writer.end()
writer.end() # Species
#
# Reactions.
#
decorator = KineticLawDecoratorMathematica(self.speciesIdentifiers)
writer.begin('Section', 'Reactions')
# reactions
content = r'reactions={'
content += r','.join([r'%s[t]' % r.id.replace('_','') for r in
self.reactions])
content += r'};\n'
# reactionIdentifiers
content += r'reactionIdentifiers=Table[Head[reactions[[i]]],{i,Length[reactions]}];\n'
# reactionEquations
content += r'reactionEquations={'
equations = []
for r in self.reactions:
eqn = r"%s'[t]==" % r.id.replace('_','')
if r.massAction:
equations.append(r.id.replace('_','') + "'[t]==" +
r.makeMassActionPropensityFunctionMathematica\
(self.speciesIdentifiers).replace('_',''))
else:
# Use ToExpression[] to convert most mathematical expressions
# to standard Mathematica form. For example "sin(x)" will be
# converted to "Sin[x]". Note that "pow(x,y)" is not
# correctly interpreted.
equations.append(r.id.replace('_','') +\
r"'[t]==ToExpression[\"" +\
decorator(r.propensity).replace('_','') +\
r'\",TraditionalForm]')
content += r','.join(equations)
content += r'};\n'
# reactionInitialConditions
content += r'reactionInitialConditions=Table[reactions[[i]][[0]][0]==0,{i,Length[reactions]}];'
writer.begin('Input', content)
writer.end()
writer.end() # Reactions
#
# Time interval.
#
writer.begin('Section', 'Time Interval')
writer.begin('Input', r'startTime=%s;\nequilibrationTime=%s;\nrecordingTime=%s;\nnumberOfFrames=%s;' %
(mathematicaForm(method.startTime),
mathematicaForm(method.equilibrationTime),
mathematicaForm(method.recordingTime),
mathematicaForm(method.numberOfFrames)))
writer.end()
writer.end() # Time Interval
#
# Numerically Solve
#
writer.begin('Section', 'Numerically Solve')
writer.begin('Input', r'initialTime=startTime+equilibrationTime;\nfinalTime=initialTime+recordingTime;\nframeTimes=Table[initialTime+(i-1)recordingTime/numberOfFrames,{i,numberOfFrames}];\nsolution=NDSolve[Join[speciesEquations,reactionEquations,speciesInitialConditions,reactionInitialConditions],Join[species,reactions],{t,startTime,finalTime}][[1]];')
writer.end()
writer.end() # Numerically Solve
#
# Plot the Species Populations
#
if recordedSpecies:
writer.begin('Section', 'Plot the Species Populations')
# Note: Mathematica indices start at 1.
writer.begin('Input', r'recordedSpecies={' +
','.join([str(_i+1) for _i in recordedSpecies]) + r'};')
writer.end()
writer.begin('Text', r'Plot all of the species with tooltips.')
writer.end()
writer.begin('Input', r'Plot[Evaluate[Table[Tooltip[species[[recordedSpecies[[i]]]]/.solution,speciesIdentifiers[[recordedSpecies[[i]]]]],{i,Length[recordedSpecies]}]],{t,initialTime,finalTime},PlotRange->All]')
writer.end()
writer.begin('Text', r'Plot all of the species with a legend.')
writer.end()
writer.begin('Input', r'Plot[Evaluate[species[[recordedSpecies]]/.solution],{t,initialTime,finalTime},PlotRange->All,PlotLegend->speciesIdentifiers[[recordedSpecies]],LegendPosition->{1.1,-0.5}]')
writer.end()
writer.begin('Text', r'Plot each of the species.')
writer.end()
writer.begin('Input', r'GraphicsGrid[Table[{Plot[Evaluate[species[[recordedSpecies[[i]]]]/.solution],{t,initialTime,finalTime},PlotRange->All,PlotLabel->speciesIdentifiers[[recordedSpecies[[i]]]]]},{i,Length[recordedSpecies]}],ImageSize->400]')
writer.end()
writer.end() # Plot the Species Populations
#
# Plot the Reaction Counts
#
if recordedReactions:
writer.begin('Section', 'Plot the Reaction Counts')
# Note: Mathematica indices start at 1.
writer.begin('Input', r'recordedReactions={' +
','.join([str(_i+1) for _i in recordedReactions]) + r'};')
writer.end()
writer.begin('Text', r'Plot all of the reactions with tooltips.')
writer.end()
writer.begin('Input', r'Plot[Evaluate[Table[Tooltip[reactions[[recordedReactions[[i]]]]/.solution,reactionIdentifiers[[recordedReactions[[i]]]]],{i,Length[recordedReactions]}]],{t,initialTime,finalTime},PlotRange->All]')
writer.end()
writer.begin('Text', r'Plot all of the reactions with a legend.')
writer.end()
writer.begin('Input', r'Plot[Evaluate[reactions[[recordedReactions]]/.solution],{t,initialTime,finalTime},PlotRange->All,PlotLegend->reactionIdentifiers[[recordedReactions]],LegendPosition->{1.1,-0.5}]')
writer.end()
writer.begin('Text', r'Plot each of the reactions.')
writer.end()
writer.begin('Input', r'GraphicsGrid[Table[{Plot[Evaluate[reactions[[recordedReactions[[i]]]]/.solution],{t,initialTime,finalTime},PlotRange->All,PlotLabel->reactionIdentifiers[[recordedReactions[[i]]]]]},{i,Length[recordedReactions]}],ImageSize->400]')
writer.end()
writer.end() # Plot the Reaction Counts
#
# Write a Trajectory file that Cain can Import
#
writer.begin('Section', 'Write a Trajectory file that Cain can Import')
writer.begin('Text', r'The current directory. You can change the directory with SetDirectory[].')
writer.end()
writer.begin('Input', r'Directory[]')
writer.end()
writer.begin('Text', r'Write the trajectory data to %s.txt.' % self.id)
writer.end()
# CONTINUE: put in dictionary.
#r'(*The number of species.*)',
#r'Write[file,Length[species]];',
#r'(*The number of reactions.*)',
#r'Write[file,Length[reactions]];',
#r'(*The number of frames.*)',
#r'Write[file,numberOfFrames];',
#r'(*The list of frame times.*)',
#r'If[numberOfFrames==1,frameTimes={finalTime},frameTimes=Table[initialTime+(i-1)recordingTime/(numberOfFrames-1),{i,numberOfFrames}]];',
#r'For[i=1,i<=numberOfFrames,++i,WriteString[file,CForm[frameTimes[[i]]],\" \"]];',
#r'WriteString[file,\"\\n\"];',
inputs = [r'file=OpenWrite[\"%s.txt\"];' % self.id,
r'(*Blank line for the Python dictionary of information.*)',
r'WriteString[file,\"\\n\"];',
r'(*The number of trajectories.*)',
r'Write[file,1];',
r'(*Blank line for the initial Mersenne twister state.*)',
r'WriteString[file,\"\\n\"];',
r'(*The solver was successful.*)',
r'WriteString[file,\"\\n\"];',
r'(*The species populations at each frame.*)',
r'For[i=1,i<=numberOfFrames,++i,For[j=1,j<=Length[recordedSpecies],++j,WriteString[file,CForm[species[[recordedSpecies[[j]]]]/.solution/.t->frameTimes[[i]]],\" \"]]];',
r'WriteString[file,\"\\n\"];',
r'(*The reaction counts at each frame.*)',
r'For[i=1,i<=numberOfFrames,++i,For[j=1,j<=Length[recordedReactions],++j,WriteString[file,CForm[reactions[[recordedReactions[[j]]]]/.solution/.t->frameTimes[[i]]],\" \"]]];',
r'WriteString[file,\"\\n\"];',
r'(*Blank line for the final Mersenne twister state.*)',
r'WriteString[file,\"\\n\"];',
r'Close[file];']
writer.begin('Input', r'\n'.join(inputs))
writer.end()
writer.end() # Write a Trajectory file that Cain can Import
writer.end() # Title
writer.end() # Notebook
def makeAsciiSpeciesReferenceList(self, species):
x = ''
first = True
for speciesReference in species:
if first:
first = False
else:
x = x + ' + '
if speciesReference.stoichiometry != 1:
x = x + '%d ' % speciesReference.stoichiometry
x = x + speciesReference.species
return x
# CONTINUE REMOVE
def makeAsciiReaction(self, reaction, arrow='->'):
return self.makeAsciiSpeciesReferenceList(reaction.reactants) +\
' ' + arrow + ' ' +\
self.makeAsciiSpeciesReferenceList(reaction.products)
def writeSpeciesTable(self):
table = []
for id in self.speciesIdentifiers:
species = self.species[id]
table.append([id, str(species.initialAmount), species.name,
species.compartment])
return table
def writeReactionsTable(self):
table = []
for reaction in self.reactions:
if reaction.massAction:
massAction = '1'
else:
massAction = ''
table.append([reaction.id,
self.makeAsciiSpeciesReferenceList(reaction.reactants),
self.makeAsciiSpeciesReferenceList(reaction.products),
massAction, reaction.propensity, reaction.name])
return table
# CONTINUE: Convert the rest of the write*Table function to this style.
def writeTimeEventsTable(self):
return [[event.id, event.times, event.assignments, event.name] for
event in self.timeEvents]
def writeTriggerEventsTable(self):
return [[event.id, event.trigger, event.assignments,
event.delay and str(event.delay) or '',
event.useValuesFromTriggerTime and '1' or
not event.useValuesFromTriggerTime and '', event.name] for
event in self.triggerEvents]
def writeParametersTable(self):
table = []
for id in self.parameters:
p = self.parameters[id]
table.append([id, p.expression, p.name])
return table
def writeCompartmentsTable(self):
table = []
for id in self.compartments:
c = self.compartments[id]
table.append([id, c.expression, c.name])
return table
def duplicateModel(model, multiplicity, useScaling):
"""Duplicate the model by the specified multiplicity."""
assert int(multiplicity) == multiplicity and multiplicity >= 2
import re, copy
if useScaling:
from random import random
duplicated = Model()
duplicated.id = model.id
duplicated.name = model.name
# CONTINUE: This is not correct for events because the species id's change.
duplicated.timeEvents = copy.deepcopy(model.timeEvents)
duplicated.triggerEvents = copy.deepcopy(model.triggerEvents)
duplicated.compartments = copy.deepcopy(model.compartments)
duplicated.parameters = copy.deepcopy(model.parameters)
for i in range(multiplicity):
suffix = '_' + str(i + 1)
if useScaling:
factor = str(random()) + '*'
# The species.
for id in model.speciesIdentifiers:
duplicated.species[id + suffix] = copy.deepcopy(model.species[id])
duplicated.speciesIdentifiers.append(id + suffix)
for r in model.reactions:
# Copy the reaction.
reaction = copy.deepcopy(r)
# Add a suffix to the species and reaction identifiers.
reaction.id += suffix
for reactant in reaction.reactants:
reactant.species += suffix
for product in reaction.products:
product.species += suffix
if not reaction.massAction:
for id in model.speciesIdentifiers:
reaction.propensity = re.sub(id, id + suffix,
reaction.propensity)
if useScaling:
reaction.propensity = factor + reaction.propensity
# Append the reaction to the duplicated model.
duplicated.reactions.append(reaction)
# Return the duplicated model.
return duplicated
def writeModelXml(model, out=None):
if out:
writer = XmlWriter(out)
else:
writer = XmlWriter()
writer.beginDocument()
model.writeXml(writer)
writer.endDocument()
def writeModelSbml(model, out=None):
if out:
writer = XmlWriter(out)
else:
writer = XmlWriter()
writer.beginDocument()
model.writeSbml(writer, 3)
writer.endDocument()
def writeModelMathematica(model, method, out=None):
if out:
writer = MathematicaWriter(out)
else:
writer = MathematicaWriter()
recordedSpecies = range(len(model.species))
recordedReactions = range(len(model.reactions))
model.writeMathematica(writer, method, recordedSpecies, recordedReactions)
def main():
from Species import Species
from Method import Method
from SpeciesReference import SpeciesReference
print('-'*79)
print('Time Homogeneous')
model = Model()
model.id = 'model'
model.compartments['C1'] = Value('Cell', '1')
model.speciesIdentifiers.append('s1')
model.species['s1'] = Species('C1', 'species 1', '13')
model.speciesIdentifiers.append('s2')
model.species['s2'] = Species('C1', 'species 2', '17')
model.reactions.append(
Reaction('r1', 'reaction 1', [SpeciesReference('s1')],
[SpeciesReference('s2')], True, '1.5 * pi'))
model.reactions.append(
Reaction('r2', 'reaction 2',
[SpeciesReference('s1'), SpeciesReference('s2')],
[SpeciesReference('s1', 2)], True, '2.5 * e'))
writeModelXml(model)
print('')
print(model.writeSpeciesTable())
print('')
print(model.writeReactionsTable())
# The model must be evaluated for writing SBML or the C++ code.
model.evaluate()
writeModelSbml(model, open('model.xml', 'w'))
method = Method()
writeModelMathematica(model, method, open('model.nb', 'w'))
print('')
print(model.makePropensitiesNumberOfReactions())
print(model.makePropensitiesConstructor())
print(model.makePropensitiesMemberFunctions(True))
print('')
model.writeCmdl(sys.stdout)
print('-'*79)
print('Not mass-action.')
model = Model()
model.id = 'model'
model.compartments['C1'] = Value('Cell', '1')
model.speciesIdentifiers.append('s1')
model.species['s1'] = Species('C1', 'species 1', '13')
model.speciesIdentifiers.append('s2')
model.species['s2'] = Species('C1', 'species 2', '17')
model.reactions.append(
Reaction('r1', 'reaction 1', [SpeciesReference('s1')],
[SpeciesReference('s2')], False, '1.5 * pi'))
model.reactions.append(
Reaction('r2', 'reaction 2',
[SpeciesReference('s1'), SpeciesReference('s2')],
[SpeciesReference('s1', 2)], False, '2.5 * e'))
writeModelXml(model)
print('')
print(model.writeSpeciesTable())
print('')
print(model.writeReactionsTable())
# The model must be evaluated for writing SBML or the C++ code.
model.evaluate()
writeModelSbml(model, open('model.xml', 'w'))
method = Method()
writeModelMathematica(model, method, open('modelNma.nb', 'w'))
print('')
print(model.makePropensitiesNumberOfReactions())
print(model.makePropensitiesConstructor())
print(model.makePropensitiesMemberFunctions(True))
print('')
model.writeCmdl(sys.stdout)
print('-'*79)
print('Time Inhomogeneous')
model = Model()
model.id = 'model'
model.speciesIdentifiers.append('s1')
model.species['s1'] = Species('', 'species 1', '13')
model.speciesIdentifiers.append('s2')
model.species['s2'] = Species('', 'species 2', '17')
model.reactions.append(
Reaction('r1', 'reaction 1', [SpeciesReference('s1')],
[SpeciesReference('s2')], True, '2+sin(t)'))
model.reactions.append(
Reaction('r2', 'reaction 2',
[SpeciesReference('s1'), SpeciesReference('s2')],
[SpeciesReference('s1', 2)], False, '1+exp(-t)'))
writeModelXml(model)
print('')
print(model.writeSpeciesTable())
print('')
print(model.writeReactionsTable())
# The model must be evaluated for writing SBML or the C++ code.
model.evaluateInhomogeneous()
writeModelSbml(model, open('model.xml', 'w'))
print('')
print(model.makeInhomogeneousPropensities(True))
print('')
if __name__ == '__main__':
main()
|