File: State.py

package info (click to toggle)
cain 1.10%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,856 kB
  • sloc: cpp: 49,612; python: 14,988; xml: 11,654; ansic: 3,644; makefile: 133; sh: 2
file content (1891 lines) | stat: -rw-r--r-- 81,638 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
"""The state of the model, method, and simulation output."""

import sys
import re
import csv
import copy
import threading
import subprocess
import os
import os.path
import random
import shutil
import signal
import tempfile
import time
import wx

from xml.sax import parse

# If we are running the unit tests.
if __name__ == '__main__':
    sys.path.insert(1, '..')
    resourcePath = '../'
else:
    from resourcePath import resourcePath
    resourcePath = os.path.abspath(resourcePath)

from Model import Model, duplicateModel
from Method import Method
from TimeSeriesFrames import TimeSeriesFrames
from TimeSeriesAllReactions import TimeSeriesAllReactions
from HistogramFrames import HistogramFrames
from HistogramAverage import HistogramAverage
from StatisticsFrames import StatisticsFrames
from StatisticsAverage import StatisticsAverage
from Histogram import Histogram
import simulationMethods
import Mt19937
from Utilities import getNewIntegerString, getUniqueName
import convert
from simulation.FirstReaction import FirstReaction
from simulation.Direct import Direct

from fio.ContentHandler import ContentHandler
from fio.ContentHandlerSbml import ContentHandlerSbml
import fio.gnuplot
from fio.XmlWriter import XmlWriter
from fio.MathematicaWriter import MathematicaWriter
from gui.Preferences import Preferences

def fixSpacesInPath(path):
    if sys.platform in ('win32', 'win64'):
        return '\\'.join([re.search(' ', x) and '"' + x + '"' or x for x in
                          path.split('\\')])
    else:
        return re.sub(' ', '\ ', path)

# CONTINUE: REMOVE
# As of Python 2.7, kill has Windows support.
def _killProcess(process):
    """Kill the specified process."""
    # This does not work for win32 either. Both methods stop the process but do
    # not kill it.
    if False:
        import os
        os.popen('TASKKILL /PID ' + str(process.pid) + ' /F')
    if sys.platform in ('win32', 'win64'):
        import ctypes
        handle = ctypes.windll.kernel32.OpenProcess(1, False, process.pid)
        ctypes.windll.kernel32.TerminateProcess(handle, -1)
        ctypes.windll.kernel32.CloseHandle(handle)
    else:
        os.kill(process.pid, signal.SIGKILL)

class RecordingThreadPythonTimeSeriesFrames(threading.Thread):
    """Run the simulation. Call functions to record the trajectories, record
    the MT state, and increment the progress gauge."""
    def __init__(self, main, state, simulator, output, numberOfTrajectories):
        threading.Thread.__init__(self)
        # The main application window.
        self.main = main
        # The class that records the state.
        self.state = state
        # The simulation class.
        self.simulator = simulator
        # The simulation output is collected in an instance of TimeSeriesFrames.
        assert isinstance(output, TimeSeriesFrames)
        self.output = output
        # The number of trajectories to generate.
        assert isinstance(numberOfTrajectories, int)
        self.numberOfTrajectories = numberOfTrajectories
        self.halt = False

    def run(self):
        oldSize = len(self.output.populations)
        try:
            for i in range(self.numberOfTrajectories):
                # Generate a trajectory.
                self.simulator.initialize()
                self.simulator.generateTrajectory()
                # Record the trajectory.
                self.output.populations.append(\
                    copy.copy(self.simulator.populations))
                self.output.reactionCounts.append(\
                    copy.copy(self.simulator.reactionCounts))
                # Increment the progress gauge.
                self.main.incrementProgressGauge(1)
                if self.halt:
                    break
            # Record the Mersenne twister state.
            self.state.listOfMt19937States[0] = list(random.getstate()[1])
        except Exception, error:
            wx.MessageBox(str(error), 'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
            self.state.numberOfTrajectories = 0
            self.state.threads = []
            self.main.updateSimulations()
            self.main.launcher.isRunning = False
            self.main.launcher.update()
        # Record the number of successfully generated trajectories for the
        # completion message.
        self.state.successfulTrajectories += len(self.output.populations) -\
                                             oldSize


class RecordingThread(threading.Thread):
    """Base class for threads that read solver output."""
    def __init__(self, main, state, index, input, output):
        threading.Thread.__init__(self)
        self.main = main
        self.state = state
        # The thread index is in the range [0..numberOfThreads).
        self.index = index
        # The input stream to the solver.
        self.input = input
        # The output stream from the solver.
        self.output = output

    def handleException(self, error):
        #self.state.lock.acquire()
        wx.MessageBox(str(error), 'Error!', style=wx.OK|wx.ICON_EXCLAMATION)
        self.state.numberOfTrajectories = 0
        # Delete this thread.
        if self in self.state.threads:
            index = self.state.threads.index(self)
            self.state.processes.pop(index)
            self.state.threads.pop(index)
        # If no other threads are still recording.
        if not self.state.threads:
            # Reset the launcher.
            self.main.updateSimulations()
            self.main.launcher.isRunning = False
            self.main.launcher.update()
        #self.state.lock.release()

class RecordingThreadTimeSeriesFrames(RecordingThread):
    """Read populations, reaction counts, and Mersenne twister state from 
    the pipe. Call functions to record the trajectories, record the MT state,
    and increment the progress gauge."""
    def __init__(self, main, state, index, input, output):
        RecordingThread.__init__(self, main, state, index, input, output)

    def run(self):
        try:
            isFirst = True
            # Run until we have generated enough trajectories.
            while True:
                # Send the number of trajectories to generate.
                numberOfTrajectories = self.state.\
                                       getNumberOfTrajectoriesToLaunch()
                self.input.write('%d\n' % numberOfTrajectories)
                self.input.flush()
                # Stop if there are no more trajectories to generate.
                if numberOfTrajectories == 0:
                    break
                if isFirst:
                    # Skip the blank line.
                    self.output.readline()
                    isFirst = False
                # Record the generated trajectories.
                self.state.readTimeSeriesFrames(self.output, self.index)
                # Increment the progress gauge.
                self.main.incrementProgressGauge(numberOfTrajectories)
        except Exception, error:
            self.handleException(error)

class RecordingThreadTrajectoryAll(RecordingThread):
    """Read populations, reaction counts, and Mersenne twister state from 
    the pipe. Call functions to record the trajectories, record the MT state,
    and increment the progress gauge."""
    def __init__(self, main, state, index, input, output):
        RecordingThread.__init__(self, main, state, index, input, output)

    def run(self):
        try:
            isFirst = True
            # Run until we have generated enough trajectories.
            while True:
                # Send the number of trajectories to generate.
                numberOfTrajectories = self.state.\
                                       getNumberOfTrajectoriesToLaunch()
                self.input.write('%d\n' % numberOfTrajectories)
                self.input.flush()
                # Stop if there are no more trajectories to generate.
                if numberOfTrajectories == 0:
                    break
                if isFirst:
                    # Skip the blank line.
                    self.output.readline()
                    isFirst = False
                # Record the generated trajectories.
                self.state.readTimeSeriesAllReactions(self.output, self.index)
                # Increment the progress gauge.
                self.main.incrementProgressGauge(numberOfTrajectories)
        except Exception, error:
            self.handleException(error)

class RecordingThreadHistogramFrames(RecordingThread):
    """Record the solver output."""
    def __init__(self, main, state, index, input, output):
        RecordingThread.__init__(self, main, state, index, input, output)

    def run(self):
        try:
            # Run until we have generated enough trajectories.
            while True:
                # Send the number of trajectories to generate.
                numberOfTrajectories = self.state.\
                                       getNumberOfTrajectoriesToLaunch()
                self.input.write('%d\n' % numberOfTrajectories)
                self.input.flush()
                # Stop if there are no more trajectories to generate.
                if numberOfTrajectories == 0:
                    break
                # CONTINUE: Sometime this fails. Determine why.
                # Read the number of completed trajectories in this task.
                numberCompleted = int(self.output.readline())
                assert numberCompleted == numberOfTrajectories
                # Increment the progress gauge.
                self.main.incrementProgressGauge(numberOfTrajectories)
            # Skip the blank line.
            self.output.readline()
            # Record the histograms from the generated trajectories.
            self.state.readHistogramFrames(self.output, self.index)
        except Exception, error:
            self.handleException(error)

class RecordingThreadHistogramAverage(RecordingThread):
    """Record the solver output."""
    def __init__(self, main, state, index, input, output):
        RecordingThread.__init__(self, main, state, index, input, output)

    def run(self):
        try:
            # Run until we have generated enough trajectories.
            while True:
                # Send the number of trajectories to generate.
                numberOfTrajectories = self.state.\
                                       getNumberOfTrajectoriesToLaunch()
                self.input.write('%d\n' % numberOfTrajectories)
                self.input.flush()
                # Stop if there are no more trajectories to generate.
                if numberOfTrajectories == 0:
                    break
                # CONTINUE: Sometime this fails. Determine why.
                # Read the number of completed trajectories in this task.
                numberCompleted = int(self.output.readline())
                assert numberCompleted == numberOfTrajectories
                # Increment the progress gauge.
                self.main.incrementProgressGauge(numberOfTrajectories)
            # Skip the blank line.
            self.output.readline()
            # Record the histograms from the generated trajectories.
            self.state.readHistogramAverage(self.output, self.index)
        except Exception, error:
            self.handleException(error)

class State:
    """The state of the models, methods, and simulation output.

    self.output holds the simulation output. self.solvers
    holds the names of the compiled custom executables. The output 
    dictionary is used to determine if the user can edit a model or 
    simulation parameters. The solvers dictionary exploits this to keep 
    custom executable in sync with the model and simulation parameters.
    When a custom solver is compiled, an empty data structure is 
    added if there is not already accumulated output. When a set of 
    simulation output is deleted, the corresponding custom executable is
    deleted (if it exists)."""
    
    def __init__(self):
        """Constructor."""
        self.preferences = Preferences()
        self.processes = []
        self.threads = []
        self.lock = threading.Lock()
        self.errorMessages = []
        self.clear()
        # The initial seed used to generate MT 19937 states.
        self.seed = 2**31
        self.listOfMt19937States = []
        self.customSolversDirectory = tempfile.mkdtemp()
        self.version = '1.10'

    def __del__(self):
        if os.access(self.customSolversDirectory, os.F_OK):
            shutil.rmtree(self.customSolversDirectory)

    def clear(self):
        """Clear the data structure."""
        # Dictionary of models. The keys are the model identifiers.
        self.models = {}
        self.methods = {}
        # Dictionary of output. The keys are tuples of model 
        # identifiers and simulation parameter identifiers.
        self.output = {}
        # Dictionary of compiled solvers. The keys are tuples of model 
        # identifiers and simulation parameter identifiers.
        self.solvers = {}

    def generateNewMt19937State(self):
        """Generate a new MT 19937 state."""
        # Generate the state and get a new seed. The state is an array of 
        # 624 32-bit unsigned integers and a position in the array.
        state, self.seed = Mt19937.generateState(self.seed)
        # Add it to the list of states.
        self.listOfMt19937States.append(state)

    def seedMt19937(self, seed):
        # The seed is a 32-bit unsigned integer.
        assert 0 <= seed and seed < 2**32
        # Record the seed.
        self.seed = seed
        # Clear the current states. New states will be generated when 
        # simulations are launched.
        self.listOfMt19937States = []

    def insertNewModel(self):
        """Insert a new model. Return the new model identifier."""
        # Make an empty model with a unique identifier.
        model = Model()
        model.id = getNewIntegerString(self.models.keys())
        # Add the model to the dictionary.
        self.models[model.id] = model
        # Return the new model's key.
        return model.id

    def insertCloneModel(self, id):
        """Insert a clone of the specified model. Return the new model 
        identifier."""
        assert id in self.models
        # Make an empty model with a unique identifier.
        model = copy.deepcopy(self.models[id])
        model.id = getUniqueName(id, self.models.keys())
        # Add the model to the dictionary.
        self.models[model.id] = model
        # Return the new model's key.
        return model.id

    def insertDuplicatedModel(self, id, multiplicity, useScaling):
        """Insert a duplicated version of the specified model. Return the
        new model identifier."""
        assert id in self.models
        # Make a duplicated model with a unique identifier.
        model = duplicateModel(self.models[id], multiplicity, useScaling)
        model.id = getUniqueName(id, self.models.keys())
        # Add the model to the dictionary.
        self.models[model.id] = model
        # Return the new model's key.
        return model.id

    def insertNewMethod(self):
        """Insert new simulation method. Return the new identifier."""
        # Make an empty model with a unique identifier.
        m = Method()
        m.id = getNewIntegerString(self.methods.keys())
        # Add the method to the dictionary.
        self.methods[m.id] = m
        # Return the new key.
        return m.id

    def insertCloneMethod(self, id):
        """Insert a clone of the specified method. Return the new identifier."""
        assert id in self.methods
        # Make an empty method with a unique identifier.
        m = copy.deepcopy(self.methods[id])
        m.id = getUniqueName(id, self.methods.keys())
        # Add to the dictionary.
        self.methods[m.id] = m
        # Return the new key.
        return m.id

    def changeModelId(self, old, new):
        # Change in the set of models.
        self.models[new] = self.models[old]
        self.models[new].id = new
        del self.models[old]
        # Change in the simulation output.
        for (modelId, methodId) in self.output.keys():
            if modelId == old:
                self.output[(new, methodId)] =\
                    self.output[(old, methodId)]
                del self.output[(old, methodId)]
        # Change in the set of solvers.
        for (modelId, methodId) in self.solvers.keys():
            if modelId == old:
                self.solvers[(new, methodId)] =\
                    self.solvers[(old, methodId)]
                del self.solvers[(old, methodId)]

    def changeMethodId(self, old, new):
        # Change in the set of simulation parameters.
        self.methods[new] = self.methods[old]
        self.methods[new].id = new
        del self.methods[old]
        # Change in the simulation output.
        for (modelId, methodId) in self.output.keys():
            if methodId == old:
                self.output[(modelId, new)] =\
                    self.output[(modelId, old)]
                del self.output[(modelId, old)]
        # Change in the set of solvers.
        for (modelId, methodId) in self.solvers.keys():
            if methodId == old:
                self.solvers[(modelId, new)] =\
                    self.solvers[(modelId, old)]
                del self.solvers[(modelId, old)]

    def doesModelHaveDependentOutput(self, id):
        for (modelId, methodId) in self.output.keys():
            if id == modelId:
                return True
        return False

    def doesMethodHaveDependentOutput(self, id):
        for (modelId, methodId) in self.output.keys():
            if id == methodId:
                return True
        return False

    def deleteOutput(self, modelId, methodId):
        del self.output[(modelId, methodId)]
        if (modelId, methodId) in self.solvers:
            del self.solvers[(modelId, methodId)]

    def deleteAllOutput(self):
        self.output = {}
        self.solvers = {}

    def saveCustomExecutable(self, modelId, methodId, fileName):
        """Save a custom executable."""
        if sys.platform in ('win32', 'win64'):
            suffix = '.exe'
        else:
            suffix = ''
        shutil.copy(os.path.join(self.customSolversDirectory,
                                 self.solvers[(modelId, methodId)] +
                                 suffix), fileName)

    def saveGenericExecutable(self, methodId, fileName):
        """Save a generic executable."""
        if sys.platform in ('win32', 'win64'):
            suffix = '.exe'
        else:
            suffix = ''
        m = self.methods[methodId]
        shutil.copy(os.path.join(
            resourcePath, 'solvers', 
            simulationMethods.names[m.timeDependence][m.category][m.method][m.options] +
            suffix), fileName)

    def exportMathematica(self, modelId, methodId, recordedSpecies,
                          recordedReactions, outputFile):
        """Export the specified model and simulation parameters to a 
        Mathematica notebook."""
        # If necessary, start a new output container for this model and method.
        self.ensureOutput(modelId, methodId, recordedSpecies, recordedReactions)
        writer = MathematicaWriter(outputFile)
        self.models[modelId].writeMathematica\
            (writer, self.methods[methodId], recordedSpecies, recordedReactions)

    # Edit menu.

    # CONTINUE Perhaps move the implementation.
    def editMethod(self, id, timeDependence, category, method, options, 
                   startTime, equilibrationTime, recordingTime, maximumSteps,
                   numberOfFrames, numberOfBins, multiplicity, solverParameter):
        """Edit the method. Return None if there are no errors. Otherwise
        return an error message."""
        assert id in self.methods
        m = Method()
        m.id = id
        m.timeDependence = timeDependence
        m.category = category
        m.method = method
        m.options = options
        m.startTime = startTime
        m.equilibrationTime = equilibrationTime
        m.recordingTime = recordingTime
        m.maximumSteps = maximumSteps
        m.numberOfFrames = numberOfFrames
        m.numberOfBins = numberOfBins
        m.multiplicity = multiplicity
        m.solverParameter = solverParameter
        errorMessage = m.hasErrors()
        if not errorMessage:
            self.methods[id] = m
        return errorMessage

    # Simulation menu callbacks.

    def clearOutput(self):
        """Clear the simulation output and the solvers."""
        self.output = {}
        self.solvers = {}

    def makePackedReactionsString(self, model):
        """Return the packed reactions string for the specified model."""
        data = []
        for reaction in model.reactions:
            # Reactants.
            data.append(len(reaction.reactants))
            for speciesReference in reaction.reactants:
                data.append(model.speciesIdentifiers.index(\
                        speciesReference.species))
                data.append(speciesReference.stoichiometry)
            # Products.
            data.append(len(reaction.products))
            for speciesReference in reaction.products:
                data.append(model.speciesIdentifiers.index(\
                        speciesReference.species))
                data.append(speciesReference.stoichiometry)
            # Dependencies.
            dependencies = reaction.dependencies(model.speciesIdentifiers)
            data.append(len(dependencies))
            data.extend(dependencies)
        return ' '.join([repr(x) for x in data])

    def computeFrameTimes(self, method):
        startTime = method.startTime
        equilibrationTime = method.equilibrationTime
        recordingTime = method.recordingTime
        numberOfFrames = method.numberOfFrames
        frameTimes = [0] * numberOfFrames
        if numberOfFrames == 1:
            frameTimes[0] = startTime + equilibrationTime + recordingTime
        else:
            t0 = startTime + equilibrationTime
            for i in range(numberOfFrames):
                frameTimes[i] = t0 + i * recordingTime / (numberOfFrames - 1)
        return frameTimes

    def evaluateModel(self, modelId):
        """Evaluate the parameters, the species initial amounts, and the
        reaction propensities for the mass action kinetic laws. Return
        None if successful. Otherwise return an error message."""
        return self.models[modelId].evaluate()

    def ensureOutput(self, modelId, methodId, recordedSpecies,
                     recordedReactions):
        """Ensure that there is an output container for the specified model
        and method."""
        # Do nothing if the output container already exists.
        if (modelId, methodId) in self.output:
            return

        method = self.methods[methodId]
        category = simulationMethods.categories[method.timeDependence]\
            [method.category]

        if category in ('Time Series, Uniform', 'Time Series, Deterministic'):
            self.output[(modelId, methodId)] =\
                TimeSeriesFrames(self.computeFrameTimes(method),
                                 recordedSpecies, recordedReactions)
        elif category == 'Time Series, All Reactions':
            # By definition all species and reactions are recorded.
            model = self.models[modelId]
            assert len(recordedSpecies) == len(model.speciesIdentifiers)
            assert len(recordedReactions) == len(model.reactions)
            initialTime = method.startTime + method.equilibrationTime
            finalTime = initialTime + method.recordingTime
            self.output[(modelId, methodId)] =\
                TimeSeriesAllReactions(recordedSpecies, recordedReactions,
                                       initialTime, finalTime)
        elif category == 'Histograms, Transient Behavior':
            hf = HistogramFrames(method.numberOfBins, method.multiplicity,
                                 recordedSpecies)
            hf.setFrameTimes(self.computeFrameTimes(method))
            self.output[(modelId, methodId)] = hf
        elif category == 'Histograms, Steady State':
            hf = HistogramFrames(method.numberOfBins, method.multiplicity,
                                 recordedSpecies)
            self.output[(modelId, methodId)] =\
                HistogramAverage(method.numberOfBins, method.multiplicity,
                                 recordedSpecies)
        else:
            assert False

    def launchSuiteOfSimulations(self, main, modelId, methodId, recordedSpecies,
                                 recordedReactions, numberOfProcesses,
                                 numberOfTrajectories, trajectoriesPerTask,
                                 niceIncrement, useCustomSolver):
        """Launch the suite of simulations.
        Return an error message if the solver cannot be launched. Otherwise
        return None."""
        assert numberOfProcesses >= 1
        # There should not be a running simulation.
        assert not self.threads
        assert not self.processes

        # Clear any old error messages.
        self.errorMessages = []
        # Record these for getNumberOfTrajectoriesToLaunch().
        self.numberOfTrajectories = numberOfTrajectories
        self.trajectoriesPerTask = trajectoriesPerTask

        # If necessary, create a new output container for this model and set
        # of parameters.
        self.ensureOutput(modelId, methodId, recordedSpecies,
                          recordedReactions)
        self.currentOutput = self.output[(modelId, methodId)]
        self.successfulTrajectories = 0

        timeDependence = self.methods[methodId].timeDependence
        category = self.methods[methodId].category
        method = self.methods[methodId].method
        options = self.methods[methodId].options

        if sys.platform in ('win32', 'win64'):
            suffix = '.exe'
            command = 'start /B '
            if niceIncrement < 4:
                command += '/High '
            elif niceIncrement < 8:
                command += '/Abovenormal '
            elif niceIncrement < 12:
                command += '/Normal '
            elif niceIncrement < 16:
                command += '/Belownormal '
            else:
                command += '/Low '
        else:
            suffix = ''
            command = 'nice -n ' + str(niceIncrement) + ' '

        # If there is a compiled custom solver.
        if useCustomSolver and (modelId, methodId) in self.solvers:
            solverPath = os.path.join(self.customSolversDirectory,
                                      self.solvers[(modelId, methodId)] +
                                      suffix)
            if not os.access(solverPath, os.X_OK):
                return 'Unable to access the custom solver ' \
                       + solverPath \
                       + '. Please submit a bug report to sean@caltech.edu.'
        else:
            solverPath = os.path.join(resourcePath, 'solvers', 
                                      simulationMethods.names[timeDependence][category][method][options] +
                                      suffix)
            if not os.access(solverPath, os.X_OK):
                return 'Unable to access the built-in solver ' \
                       + solverPath \
                       + '. Ensure that the solvers have been compiled. (See the Installation section of the manual.)'
        # Fix the spaces in the solver path as it will be passed to the shell.
        command += fixSpacesInPath(solverPath)
        

        for index in range(min(numberOfProcesses, numberOfTrajectories)):
            solverString =\
                self.makeSolverString(modelId, methodId, recordedSpecies,
                                      recordedReactions, False)
            if simulationMethods.isStochastic(timeDependence, category):
                solverString += self.makeMt19937String(index)
            process = subprocess.Popen(command, bufsize=-1,
                                       universal_newlines=True,
                                       shell=True, stdin=subprocess.PIPE,
                                       stdout=subprocess.PIPE)
            self.processes.append(process)

            # Send the input to the process (except for the number of 
            # trajectories).
            process.stdin.write(solverString)
            # Create the recorder thread.
            # The solver either generates frames or records all reactions.
            if simulationMethods.categories[timeDependence][category] in\
                    ('Time Series, Uniform', 'Time Series, Deterministic'):
                thread = \
                    RecordingThreadTimeSeriesFrames\
                    (main, self, index, process.stdin, process.stdout)
            elif simulationMethods.categories[timeDependence][category] ==\
                    'Time Series, All Reactions':
                thread = \
                    RecordingThreadTrajectoryAll\
                    (main, self, index, process.stdin, process.stdout)
            elif simulationMethods.categories[timeDependence][category] ==\
                    'Histograms, Transient Behavior':
                thread = \
                    RecordingThreadHistogramFrames\
                    (main, self, index, process.stdin, process.stdout)
            elif simulationMethods.categories[timeDependence][category] ==\
                    'Histograms, Steady State':
                thread = \
                    RecordingThreadHistogramAverage\
                    (main, self, index, process.stdin, process.stdout)
            else:
                assert False
            thread.start()
            self.threads.append(thread)
        # No launching errors.
        return None

    def launchPythonSimulation(self, main, modelId, methodId, recordedSpecies,
                               recordedReactions, numberOfTrajectories):
        """Launch the Python simulation.
        Return an error message if the solver cannot be launched. Otherwise
        return None."""
        # There should not be a running simulation.
        assert not self.threads
        assert not self.processes

        # Clear any old error messages.
        self.errorMessages = []

        # If necessary, create a new output container for this model and set
        # of parameters.
        self.ensureOutput(modelId, methodId, recordedSpecies, recordedReactions)
        output = self.output[(modelId, methodId)]
        self.successfulTrajectories = 0

        # Create the simulator.
        method = self.methods[methodId]
        name = simulationMethods.methods[method.timeDependence]\
               [method.category][method.method]
        # Choose the solver.
        if name == 'Direct':
            solver = Direct(convert.makeModel(self.models[modelId],
                                              method), method.maximumSteps)
        elif name == 'First Reaction':
            solver = FirstReaction(convert.makeModel(self.models[modelId],
                                                     method),
                                   method.maximumSteps)
        else:
            raise Exception('Unknown method "' + name + '" encountered.')
        simulator = convert.makeTimeSeriesUniform\
                    (solver, self.models[modelId], output)

        # Seed the random number generator
        if not self.listOfMt19937States:
            self.generateNewMt19937State()
        version = random.getstate()[0]
        if version >= 3:
            random.setstate((version,
                             tuple(self.listOfMt19937States[0]), None))
        
        # Create the recorder thread.
        thread = \
            RecordingThreadPythonTimeSeriesFrames\
            (main, self, simulator, output, numberOfTrajectories)
        thread.start()
        self.threads.append(thread)
        # No launching errors.
        return None

    def hasCustomSolver(self, modelId, methodId):
        return (modelId, methodId) in self.solvers

    def compileSolver(self, modelId, methodId, recordedSpecies,
                      recordedReactions):
        """Compile the solver. If there is an error, return the error message.
        Otherwise return None. Note that the Propensities* files are placed
        in the custom solvers directory, which is a temporary directory. This 
        is necessary because for MS Windows applications that are installed,
        one encounters wierdness when altering the contents of the application
        directory. If you add a file it is virtually there, but not actually
        there."""
        # Make a resource path that we can pass to the shell.
        rp = fixSpacesInPath(resourcePath)
        if sys.platform in ('win32', 'win64'):
            process = subprocess.Popen(os.path.join(rp,
                                                    r'src\solvers\vc10vars32.bat'),
                                       bufsize=-1,
                                       universal_newlines=True, shell=True,
                                       stdin=subprocess.PIPE,
                                       stdout=subprocess.PIPE,
                                       stderr=subprocess.PIPE)
            (stdout, stderr) = process.communicate()
            # If there is an error in configuring the MSVC compiler.
            if stderr:
                return 'Unable to configure the Microsoft Visual C++ 2010 compiler.\nMake sure that it is installed.\nThe Visual C++ Express Edition 2010 is a free download, available from:\nhttp://www.microsoft.com/Express/vc/'
        else:
            # If there is an error in finding the GNU C++ compiler.
            if subprocess.call(r'g++ --version', bufsize=-1, shell=True,
                               stdin=subprocess.PIPE,
                               stdout=subprocess.PIPE,
                               stderr=subprocess.PIPE):
                return 'Unable to find the GNU C++ compiler.\nMake sure that it is installed and the compiler is in your path.\nYou can check this with the shell command "which g++".'
        model = self.models[modelId]
        method = self.methods[methodId]
        if method.timeDependence == 0:
            # Time homogeneous.
            # Number of reactions.
            f = open(os.path.join(self.customSolversDirectory,
                                  'PropensitiesNumberOfReactions.ipp'), 'w')
            f.write(model.makePropensitiesNumberOfReactions())
            f.close()
            # Constructor.
            f = open(os.path.join(self.customSolversDirectory,
                                  'PropensitiesConstructor.ipp'), 'w')
            f.write(model.makePropensitiesConstructor())
            f.close()
            # Member functions.
            f = open(os.path.join(self.customSolversDirectory,
                                  'PropensitiesMemberFunctions.ipp'), 'w')
            f.write(model.makePropensitiesMemberFunctions(\
                    method.isDiscrete()))
            f.close()
        else:
            # Time homogeneous.
            # Compute the propensities.
            f = open(os.path.join(self.customSolversDirectory,
                                  'computePropensities.h'), 'w')
            f.write(model.makeInhomogeneousPropensities(method.isDiscrete()))
            f.close()
        # Compile the solver.
        sourceName = simulationMethods.names[method.timeDependence]\
            [method.category][method.method][method.options]
        assert not (modelId, methodId) in self.solvers
        executableName = getUniqueName(sourceName, self.solvers.values())
        if sys.platform in ('win32', 'win64'):
            suffix = '.exe'
        else:
            suffix = ''
        output = os.path.join(self.customSolversDirectory,
                              executableName + suffix)
        source = os.path.join(resourcePath, 'src', 'solvers',
                              sourceName + '.cc')
        if sys.platform in ('win32', 'win64'):
            # The arguments to cl need to be enclosed in quotes in case
            # the path has spaces.
            command = os.path.join(rp, r'src\solvers\vc10vars32.bat') + '&&cl /I"' + os.path.join(resourcePath, 'src') + r'" /I"' + os.path.join(resourcePath, r'src\third-party') + r'" /I' + self.customSolversDirectory + r' /Ox /EHsc /DSTOCHASTIC_CUSTOM_PROPENSITIES /Fo' + self.customSolversDirectory + ' /Fe' + output + ' "' + source + '"'
        else:
            cxx = self.preferences.data['Compilation']['Compiler'] +\
                ' -DSTOCHASTIC_CUSTOM_PROPENSITIES '
            cxx += '-o ' + output + ' '
            cxxFlags = self.preferences.data['Compilation']['Flags'] +\
                ' -I' + os.path.join(rp, 'src') +\
                ' -I' + self.customSolversDirectory + ' '
            command = cxx + cxxFlags + source
            # For linux, we need the rt library.
            if re.match('linux', sys.platform):
                command += ' -lrt'
        process = subprocess.Popen(command, bufsize=-1,
                                   universal_newlines=True, shell=True,
                                   stdin=subprocess.PIPE,
                                   stdout=subprocess.PIPE,
                                   stderr=subprocess.PIPE)
        (stdout, stderr) = process.communicate()
        #process.wait()
        # If there was an error
        if process.returncode != 0:
            # Return the error message.
            return command + '\n' + stderr + stdout
        else:
            # Record the executable in the dictionary of custom solvers.
            self.solvers[(modelId, methodId)] = executableName
            # Ensure there is an output container so the model and simulation
            # parameters are not modified.
            self.ensureOutput(modelId, methodId, recordedSpecies,
                              recordedReactions)
            return None


    def getNumberOfTrajectoriesToLaunch(self):
        self.lock.acquire()
        try:
            if self.numberOfTrajectories != 0:
                result = min(self.numberOfTrajectories,
                             self.trajectoriesPerTask)
                self.numberOfTrajectories -= result
            else:
                result = 0
        finally:
            self.lock.release()
        return result

    def tearDownSimulation(self):
        """Wait for the threads to finish. Clear the lists of processes and
        threads."""
        for thread in self.threads:
            thread.join()
        self.processes = []
        self.threads = []
            
    def stopPythonSimulation(self):
        # Clear the pending jobs.
        for thread in self.threads:
            thread.halt = True
        self.tearDownSimulation()

    def stopSimulation(self):
        # If it is a Python simulation that is being run.
        if self.threads and isinstance(self.threads[0],
                                       RecordingThreadPythonTimeSeriesFrames):
            self.stopPythonSimulation()
        else:
            # Clear the pending jobs.
            self.numberOfTrajectories = 0
            self.tearDownSimulation()

    def killSimulation(self):
        """Kill the processes. The threads will terminate by themselves."""
        # If it is a Python simulation that is being run.
        if self.threads and isinstance(self.threads[0],
                                       RecordingThreadPythonTimeSeriesFrames):
            # CONTINUE: Support killing, and not just stopping.
            self.stopPythonSimulation()
        else:
            # Clear the pending jobs.
            self.numberOfTrajectories = 0
            for process in self.processes:
                process.kill()
            self.tearDownSimulation()

    def makeMt19937String(self, processIndex):
        """
        Write the list of the MT 19937 state, terminated by a newline.
        """
        # Ensure there are sufficient RNG states.
        while len(self.listOfMt19937States) <= processIndex:
            self.generateNewMt19937State()
        # List of MT 19937 state.
        return ' '.join([str(x) for x in 
                         self.listOfMt19937States[processIndex]]) + '\n'

    def makeSolverString(self, modelId, methodId, recordedSpecies,
                         recordedReactions, arePrintingInformation):
        """Make the solver string for either a frames solver or an all 
        reactions solver."""
        method = self.methods[methodId]
        category = simulationMethods.categories[method.timeDependence]\
            [method.category]
        if arePrintingInformation:
            firstLine = '1\n'
        else:
            firstLine = '0\n'
        if category in ('Time Series, Uniform', 'Time Series, Deterministic'):
            return firstLine + self.makeSolverStringTimeSeriesFrames\
        (modelId, methodId, recordedSpecies, recordedReactions)
        elif category == 'Time Series, All Reactions':
            return firstLine + self.makeSolverStringTimeSeriesAllReactions\
                (modelId, methodId, recordedSpecies, recordedReactions)
        elif category == 'Histograms, Transient Behavior':
            return firstLine + self.makeSolverStringHistogramFrames\
                (modelId, methodId, recordedSpecies, recordedReactions)
        elif category == 'Histograms, Steady State':
            return firstLine + self.makeSolverStringHistogramAverage\
                (modelId, methodId, recordedSpecies, recordedReactions)
        else:
            assert False

    def makeSolverStringCommon(self, modelId, methodId, recordedSpecies,
                               recordedReactions):
        """
        <number of species>
        <number of reactions>
        <list of initial amounts>
        <packed reactions>
        <list of propensity factors>
        <number of species to record>
        <list of species to record>
        <number of reactions to record>
        <list of reactions to record>
        <maximum allowed steps>
        <number of solver parameters>
        <list of solver parameters>
        <starting time>
        """
        lines = []
        model = self.models[modelId]
        # Number of species.
        numberOfSpecies = len(model.species)
        lines.append('%d\n' % numberOfSpecies)
        # Number of reactions.
        numberOfReactions = len(model.reactions)
        lines.append('%d\n' % numberOfReactions)
        # List of initial amounts.
        data = []
        for i in range(numberOfSpecies):
            id = model.speciesIdentifiers[i]
            data.append(model.species[id].initialAmountValue)
        lines.append('%s\n' % ' '.join([str(x) for x in data]))
        # Packed reactions.
        lines.append('%s\n' % self.makePackedReactionsString(model))
        # List of propensity factors.
        propensityFactors = []
        for reaction in model.reactions:
            if reaction.massAction:
                propensityFactors.append(repr(reaction.propensityFactor))
            else:
                propensityFactors.append('0')
        lines.append('%s\n' % ' '.join(propensityFactors))
        # Number of species to record.
        lines.append('%d\n' % len(recordedSpecies))
        # List of species to record.
        lines.append('%s\n' % ' '.join([str(i) for i in recordedSpecies]))
        # Number of reactions to record.
        lines.append('%d\n' % len(recordedReactions))
        # List of reactions to record.
        lines.append('%s\n' % ' '.join([str(i) for i in recordedReactions]))
        # The maximum allowed steps.
        m = self.methods[methodId]
        if m.maximumSteps:
            lines.append('%r\n' % m.maximumSteps)
        else:
            # Don't place any limit on the maximum number of steps.
            lines.append('0\n')
        # If this method uses the first parameter.
        if simulationMethods.parameterNames1[m.timeDependence][m.category]\
                [m.method][m.options]:
            lines.append('1\n%s\n' % repr(m.solverParameter))
        else:
            lines.append('0\n\n')
        # Starting time.
        lines.append('%r\n' % m.startTime)
        return lines

    def makeSolverStringTimeSeriesFrames(self, modelId, methodId,
                                         recordedSpecies, recordedReactions):
        """
        Write everything except the number of trajectories.
        Use str() for integer types and repr() for floating point types.
        The common fields plus the following category specific fields:

        <number of frames>
        <list of frame times>
        """
        # The common fields.
        lines = self.makeSolverStringCommon(modelId, methodId, recordedSpecies,
                                            recordedReactions)
        # Number of frames.
        m = self.methods[methodId]
        lines.append('%d\n' % m.numberOfFrames)
        # List of frame times.
        lines.append('%s\n' % ' '.join([repr(x) for x in 
                                        self.computeFrameTimes(m)]))
        return ''.join(lines)

    def makeSolverStringTimeSeriesAllReactions\
            (self, modelId, methodId, recordedSpecies, recordedReactions):
        """
        Write everything except the number of trajectories.
        Use str() for integer types and repr() for floating point types.
        The common fields plus the following category specific fields:

        <equilibration time>
        <recording time>
        """
        # The common fields.
        lines = self.makeSolverStringCommon(modelId, methodId, recordedSpecies,
                                            recordedReactions)
        # Equilibration and recording times.
        lines.append('%r\n%r\n' % (self.methods[methodId].equilibrationTime,
                                   self.methods[methodId].recordingTime))
        return ''.join(lines)

    def makeSolverStringHistogramFrames(self, modelId, methodId,
                                        recordedSpecies, recordedReactions):
        """
        Write everything except the number of trajectories.
        Use str() for integer types and repr() for floating point types.
        The common fields plus the following category specific fields:

        <number of frames>
        <list of frame times>
        <number of bins in histograms>
        <histogram multiplicity>
        """
        # The common fields.
        lines = self.makeSolverStringCommon(modelId, methodId, recordedSpecies,
                                            recordedReactions)
        # Number of frames.
        m = self.methods[methodId]
        lines.append('%d\n' % m.numberOfFrames)
        # List of frame times.
        lines.append('%s\n' % ' '.join([repr(x) for x in 
                                        self.computeFrameTimes(m)]))
        # Number of bins in histograms.
        lines.append('%d\n' % m.numberOfBins)
        # Histogram multiplicity.
        lines.append('%d\n' % m.multiplicity)
        return ''.join(lines)


    def makeSolverStringHistogramAverage(self, modelId, methodId,
                                         recordedSpecies, recordedReactions):
        """
        Write everything except the number of trajectories.
        Use str() for integer types and repr() for floating point types.
        The common fields plus the following category specific fields:

        <equilibration time>
        <recording time>
        <number of bins in histograms>
        <histogram multiplicity>
        """
        # The common fields.
        lines = self.makeSolverStringCommon(modelId, methodId, recordedSpecies,
                                            recordedReactions)
        # Equilibration and recording times.
        m = self.methods[methodId]
        lines.append('%r\n%r\n' % (m.equilibrationTime, m.recordingTime))
        # Number of bins in histograms.
        lines.append('%d\n' % m.numberOfBins)
        # Histogram multiplicity.
        lines.append('%d\n' % m.multiplicity)
        return ''.join(lines)


    def exportJob(self, outputFile, modelId, methodId, recordedSpecies,
                  recordedReactions, numberOfTrajectories, processIndex = 0):
        """Add the list of MT 19937 state and the number of trajectories to
        the output of makeSolverString()."""
        # The output file.
        solverString = self.makeSolverString(modelId, methodId,
                                             recordedSpecies, recordedReactions,
                                             True)
        parameters = self.methods[methodId]
        if simulationMethods.isStochastic(parameters.timeDependence,
                                          parameters.category):
            solverString += self.makeMt19937String(processIndex)
        outputFile.write(solverString)
        # Number of trajectories.
        outputFile.write('%d\n' % numberOfTrajectories)
        outputFile.close()

    def readStatisticsFrames(self, inputFile, output):
        """
        Read the mean and standard deviation information from the file. 
        """
        # Mean and standard deviation for each recorded species.
        n = len(output.recordedSpecies)
        output.statistics = []
        for f in output.frameTimes:
            data = map(float, inputFile.readline().rstrip().split())
            if len(data) != 2 * n:
                raise Exception('Expected a list of %s numbers in the row '\
                                'for time frame %s.' % (2 * n, f))
            output.statistics.append([(data[2*i], data[2*i+1]) for i in
                                      range(n)])
        # Verify that the output is valid.
        error = output.hasErrors()
        if error:
            raise Exception('The imported solution is not valid:\n' + error)

    def readStatisticsAverage(self, inputFile, output):
        """
        Read the mean and standard deviation information from the file. 
        """
        # Mean and standard deviation for each recorded species.
        n = len(output.recordedSpecies)
        data = map(float, inputFile.readline().rstrip().split())
        if len(data) != 2 * n:
            raise Exception('Expected a list of %s numbers.' % 2 * n)
        output.statistics = [(data[2*i], data[2*i+1]) for i in range(n)]
        # Verify that the output is valid.
        error = output.hasErrors()
        if error:
            raise Exception('The imported solution is not valid:\n' + error)

    def readTimeSeriesFrames(self, inputFile, processIndex):
        """
        Read trajectories from the file. Append them to the list of
        trajectories. Record the new RNG state for the specified process index.
        Below is the file format.

        <number of trajectories>
        for each trajectory:
          <list of initial MT 19937 state>
          if successful:
            <blank line>
            <list of populations>
            <list of reaction counts>
          else:
            <error message>
        <list of final MT 19937 state>

        This function uses the following member variables:
        self.currentOutput
        self.listOfMt19937States
        """
        frameTimes = self.currentOutput.frameTimes
        # Number of trajectories.
        numberOfTrajectories = int(inputFile.readline())
        for i in range(numberOfTrajectories):
            # CONTINUE: I ignore the initial RNG state for now.
            inputFile.readline()
            errorMessage = inputFile.readline().rstrip()
            if errorMessage == '':
                # List of populations.
                populations = map(float, inputFile.readline().rstrip().split())
                # List of reaction counts.
                reactionCounts = map(float,
                                     inputFile.readline().rstrip().split())
                # Acquire the lock so that we can modify self.currentOutput.
                self.lock.acquire()
                try:
                    self.currentOutput.appendPopulations(populations)
                    self.currentOutput.appendReactionCounts(reactionCounts)
                    self.successfulTrajectories += 1
                finally:
                    self.lock.release()
            else:
                self.lock.acquire()
                try:
                    self.errorMessages.append(errorMessage)
                finally:
                    self.lock.release()
        # List of final MT 19937 state.
        state = map(int, inputFile.readline().rstrip().split())
        # If this is a stochastic method.
        if state:
            assert len(state) == 625
            # Record the RNG state. No need for a lock. The threads modify
            # different list elements.
            self.listOfMt19937States[processIndex] = state
        # CONTINUE: Verify that the output is valid.

    def readTimeSeriesAllReactions(self, inputFile, processIndex):
        """
        Read trajectories from the file. Append them to the list of
        trajectories. Record the new RNG state for the specified process index.
        Below is the file format.

        <number of trajectories>
        for each trajectory:
          <list of initial MT 19937 state>
          if successful:
            <blank line>
            <list of initial amounts>
            <list of reaction indices>
            <list of reaction times>
          else:
            <error message>
        <list of final MT 19937 state>

        This function uses the following member variables:
        self.currentOutput
        self.listOfMt19937States
        """
        # Number of trajectories.
        numberOfTrajectories = int(inputFile.readline())
        for i in range(numberOfTrajectories):
            # CONTINUE: I ignore the initial RNG state for now.
            inputFile.readline()
            errorMessage = inputFile.readline().rstrip()
            if errorMessage == '':
                # List of initial populations.
                initial = map(float, inputFile.readline().rstrip().split())
                # List of reaction indices.
                indices = map(int, inputFile.readline().rstrip().split())
                # List of reaction times.
                times = map(float, inputFile.readline().rstrip().split())
                # Acquire the lock so that we can modify self.currentOutput.
                self.lock.acquire()
                try:
                    self.currentOutput.appendInitialPopulations(initial)
                    self.currentOutput.appendIndices(indices)
                    self.currentOutput.appendTimes(times)
                    self.successfulTrajectories += 1
                finally:
                    self.lock.release()
            else:
                self.lock.acquire()
                try:
                    self.errorMessages.append(errorMessage)
                finally:
                    self.lock.release()
        # List of final MT 19937 state.
        state = map(int, inputFile.readline().rstrip().split())
        # If this is a stochastic method.
        if state:
            assert len(state) == 625
            # Record the RNG state. No need for a lock, each thread writes
            # to a different element of the list.
            self.listOfMt19937States[processIndex] = state
        # CONTINUE: Verify that the output is valid.

    def readHistogramFrames(self, inputFile, processIndex):
        """
        Read trajectories from the file. Append them to the list of
        trajectories. Record the new RNG state for the specified process index.
        Below is the file format.

        if successful:
          <blank line>
          <total number of trajectories>
          <histogram multiplicity>
          for each frame:
            for each recorded species:
              <cardinality>
              <sum of weights>
              <mean>
              <summed second centered moment>
              <lower bound>
              <bin width>
              for each histogram:
                <list of weighted probabilities>
        else:
          <error message>
        <list of final MT 19937 state>

        This function uses the following member variables:
        self.currentOutput
        self.listOfMt19937States
        """
        errorMessage = inputFile.readline().rstrip()
        if errorMessage == '':
            # Total number of trajectories.
            numberOfTrajectories = int(inputFile.readline())
            # The histogram multiplicity.
            multiplicity = int(inputFile.readline())
            assert multiplicity >= 1
            x = Histogram()
            # Acquire the lock so that we can modify self.currentOutput.
            self.lock.acquire()
            try:
                self.currentOutput.numberOfTrajectories += numberOfTrajectories
                self.successfulTrajectories += numberOfTrajectories
                # For each time frame.
                for frame in self.currentOutput.histograms:
                    # For each recorded species.
                    for h in frame:
                        x.read(inputFile, multiplicity)
                        h.merge(x)
            finally:
                self.lock.release()
        else:
            self.lock.acquire()
            try:
                self.errorMessages.append(errorMessage)
            finally:
                self.lock.release()
        # List of final MT 19937 state.
        state = map(int, inputFile.readline().rstrip().split())
        assert len(state) == 625
        # Record the RNG state.
        self.listOfMt19937States[processIndex] = state

    def readHistogramAverage(self, inputFile, processIndex):
        """
        Read trajectories from the file. Append them to the list of
        trajectories. Record the new RNG state for the specified process index.
        Below is the file format.

        if successful:
          <blank line>
          <total number of trajectories>
          <histogram multiplicity>
          for each recorded species:
            <cardinality>
            <sum of weights>
            <mean>
            <summed second centered moment>
            <lower bound>
            <bin width>
            for each histogram:
              <list of weighted probabilities>
        else:
          <error message>
        <list of final MT 19937 state>

        This function uses the following member variables:
        self.currentOutput
        self.listOfMt19937States
        """
        errorMessage = inputFile.readline().rstrip()
        if errorMessage == '':
            # Total number of trajectories.
            numberOfTrajectories = int(inputFile.readline())
            # The histogram multiplicity.
            multiplicity = int(inputFile.readline())
            assert multiplicity >= 1
            x = Histogram()
            # Acquire the lock so that we can modify self.currentOutput.
            self.lock.acquire()
            try:
                self.currentOutput.numberOfTrajectories += numberOfTrajectories
                self.successfulTrajectories += numberOfTrajectories
                # For each recorded species.
                for h in self.currentOutput.histograms:
                    x.read(inputFile, multiplicity)
                    h.merge(x)
            finally:
                self.lock.release()
        else:
            self.lock.acquire()
            try:
                self.errorMessages.append(errorMessage)
            finally:
                self.lock.release()
        # List of final MT 19937 state.
        state = map(int, inputFile.readline().rstrip().split())
        assert len(state) == 625
        # Record the RNG state.
        self.listOfMt19937States[processIndex] = state

    def importStatistics(self, fileName, modelId, methodId, recordedSpecies):
        # We know the output class from the selected method.
        method = self.methods[methodId]
        category = simulationMethods.categories[method.timeDependence]\
            [method.category]
        # Open the file.
        inputFile = open(fileName, 'r')
        # Call the appropriate importer.
        if category == 'Statistics, Transient Behavior':
            output = StatisticsFrames(recordedSpecies)
            output.setFrameTimes(self.computeFrameTimes(method))
            self.output[(modelId, methodId)] = output
            self.readStatisticsFrames(inputFile, output)
        elif category == 'Statistics, Steady State':
            output = StatisticsAverage(recordedSpecies)
            self.output[(modelId, methodId)] = output
            self.readStatisticsAverage(inputFile, output)
        else:
            # CONTINUE Errors intead of assertions.
            assert False
        inputFile.close()

    def importSuiteOfTrajectories(self, listOfFileNames, modelId, methodId):
        # Ensure there are sufficient RNG states.
        while len(self.listOfMt19937States) < len(listOfFileNames):
            self.listOfMt19937States.append(None)

        # We know the output class from the selected method.
        method = self.methods[methodId]
        category = simulationMethods.categories[method.timeDependence]\
            [method.category]

        # Record for readTrajectories().
        self.currentOutput = self.output[(modelId, methodId)]
        self.successfulTrajectories = 0
        
        # Import each file.
        processIndex = 0
        for fileName in listOfFileNames:
            # CONTINUE Errors intead of assertions.
            # Open the file.
            inputFile = open(fileName, 'r')
            if category in ('Histograms, Transient Behavior',
                            'Histograms, Steady State'):
                # The number of trajectories in the task.
                inputFile.readline()
            # CONTINUE: Check for consistency.
            # Skip the dictionary of information.
            inputFile.readline()
            # Call the appropriate importer.
            if category in ('Time Series, Uniform',
                            'Time Series, Deterministic'):
                self.readTimeSeriesFrames(inputFile, processIndex)
            elif category == 'Time Series, All Reactions':
                self.readTimeSeriesAllReactions(inputFile, processIndex)
            elif category == 'Histograms, Transient Behavior':
                self.readHistogramFrames(inputFile, processIndex)
            elif category == 'Histograms, Steady State':
                self.readHistogramAverage(inputFile, processIndex)
            else:
                assert False
            inputFile.close()
            processIndex += 1

    # CONTINUE HERE: REMOVE
    def importRecorded(self, inputFile):
        """Return the recorded species and the recorded reactions."""
        # Ignore output until we reach the recorded species.
        # number of species
        inputFile.readline()
        # number of reactions
        inputFile.readline()
        # number of species to record
        n = int(inputFile.readline())
        # list of species to record
        recordedSpecies = map(int, inputFile.readline().split())
        assert n == len(recordedSpecies)
        # number of reactions to record
        n = int(inputFile.readline())
        # list of reactions to record
        recordedReactions = map(int, inputFile.readline().split())
        assert n == len(recordedReactions)
        return recordedSpecies, recordedReactions

    # Export menu callbacks.

    # File I/O.

    def read(self, fileName):
        handler = ContentHandler()
        parse(open(fileName, 'r'), handler)
        self.models = handler.models
        self.methods = handler.methods
        self.output = handler.output
        if handler.seed is not None:
            self.seed = handler.seed
        self.listOfMt19937States = []
        for state in handler.listOfMt19937States:
            self.listOfMt19937States.append(state)

        # CONTINUE: Deprecated.
        # In versions prior to 1.0, for time series data that recorded all 
        # reaction events, the initial populations were not 
        # stored because there was no equilibration time. Thus we may need to
        # add these initial populations.
        for key in self.output:
            output = self.output[key]
            if output.__class__.__name__ == 'TimeSeriesAllReactions' and\
                    not output.initialPopulations:
                model = self.models[key[0]]
                # Evaluate the model to compute the initial amounts.
                error = model.evaluate()
                if error:
                    handler.errors += error
                    continue
                initialPopulations = [model.species[id].initialAmountValue
                                      for id in model.speciesIdentifiers]
                for i in range(len(output.indices)):
                    output.appendInitialPopulations(initialPopulations)

        return handler.errors

    def importSbmlModel(self, fileName):
        """Import the SBML model. Return a tuple of the model identifier
        and an error string."""
        # Import the model.
        handler = ContentHandlerSbml()
        parse(open(fileName, 'r'), handler)
        model = handler.model
        # Check that the identifier is distinct.
        if model.id in self.models:
            # If not, change it.
            model.id = getNewIntegerString(self.models.keys())
        # Add the reverse reactions, if any.
        model.addReverseReactions()
        # Try converting custom propensity function to mass action equivalents.
        model.convertCustomToMassAction()
        # Add the model to the dictionary.
        self.models[model.id] = model
        # Build the error message.
        messages = []
        if handler.errors:
            messages.append('Errors:')
            messages.append(handler.errors)
        if handler.warnings:
            messages.append('Warnings:')
            messages.append(handler.warnings)
        # Return the new model's key and the error message.
        return (model.id, '\n'.join(messages))

    def importTextModel(self, fileName):
        """Import the model. If successful, return its identifier. Otherwise
        return None."""
        from fio.readModelText import readModelText
        # Import the model.
        model = readModelText(open(fileName, 'r'))
        # If reading the model was successful.
        if model:
            # Get a distinct identifier.
            model.id = getNewIntegerString(self.models.keys())
            # Add the model to the dictionary.
            self.models[model.id] = model
            # Return the new model's key.
            return model.id
        else:
            return None

    def write(self, outputFile):
        writer = XmlWriter(outputFile)
        writer.beginDocument()
        writer.beginElement('cain', {'version':self.version})
        if self.models:
            writer.beginElement('listOfModels')
            for model in self.models.values():
                model.writeXml(writer)
            writer.endElement()
        if self.methods:
            writer.beginElement('listOfMethods')
            for p in self.methods.values():
                p.writeXml(writer)
            writer.endElement()
        if self.output:
            writer.beginElement('listOfOutput')
            for key in self.output:
                self.output[key].writeXml(writer, key[0], key[1])
            writer.endElement()

        # Random
        writer.beginElement('random', {'seed':str(self.seed)})
        for state in self.listOfMt19937States:
            writer.writeElement('stateMT19937', data=
                                ' '.join([str(x) for x in state]))
        writer.endElement() # random

        writer.endElement() # cain
        writer.endDocument()

    def writeSbml(self, modelId, outputFile, version):
        assert modelId in self.models
        writer = XmlWriter(outputFile)
        writer.beginDocument()
        self.models[modelId].writeSbml(writer, version)
        writer.endDocument()

    def exportGnuplot(self, modelId, methodId, baseName, fileName):
        """Choose the right function for the output class."""
        output = self.output[(modelId, methodId)]
        if output.__class__.__name__ == 'TimeSeriesFrames':
            self.exportGnuplotDataTimeSeriesFrames(modelId, methodId, fileName)
            self.exportGnuplotScriptTrajectory(modelId, methodId, baseName)
        elif output.__class__.__name__ == 'TimeSeriesAllReactions':
            self.exportGnuplotDataTimeSeriesAllReactions(modelId, methodId,
                                                         fileName)
            self.exportGnuplotScriptTrajectory(modelId, methodId, baseName)
        elif output.__class__.__name__ == 'HistogramFrames':
            self.exportGnuplotDataHistogramFrames(modelId, methodId, baseName)
            self.exportGnuplotScriptHistogramFrames(modelId, methodId, baseName)
        elif output.__class__.__name__ == 'HistogramAverage':
            self.exportGnuplotDataHistogramAverage(modelId, methodId, baseName)
            self.exportGnuplotScriptHistogramAverage(modelId, methodId,
                                                     baseName)
        else:
            assert False

    def exportGnuplotDataTimeSeriesFrames(self, modelId, methodId, fileName):
        model = self.models[modelId]
        output = self.output[(modelId, methodId)]
        # Construct the writer.
        writer = csv.writer(open(fileName, 'w'), dialect="gnuplot")
        # Write the comment header.
        header = ['#Time', 'Reaction Count']
        for i in output.recordedSpecies:
            header.append(model.speciesIdentifiers[i])
        for i in output.recordedReactions:
            header.append(model.reactions[i].id)
        writer.writerow(header)
        for i in range(len(output.populations)):
            # Write each data row.
            for j in range(len(output.frameTimes)):
                row = [output.frameTimes[j]]
                count = sum(output.reactionCounts[i][j])
                row.append(count)
                row.extend(output.populations[i][j])
                row.extend(output.reactionCounts[i][j])
                writer.writerow(row)
            # Blank line between frames.
            writer.writerow([])

    def exportGnuplotDataTimeSeriesAllReactions(self, modelId, methodId,
                                                fileName):
        from TrajectoryCalculator import TrajectoryCalculator
        model = self.models[modelId]
        output = self.output[(modelId, methodId)]
        # Construct the writer.
        writer = csv.writer(open(fileName, 'w'), dialect="gnuplot")
        # Convert all reaction trajectories to frame trajectories.
        trajectoryCalculator = TrajectoryCalculator(model)
        # Write the comment header.
        header = ['#Time', 'Reaction Count']
        for id in model.speciesIdentifiers:
            header.append(id)
        for reaction in model.reactions:
            header.append(reaction.id)
        writer.writerow(header)
        for index in range(len(output.indices)):
            # Convert to frames. Include the start and end times.
            times, populations, reactionCounts =\
                trajectoryCalculator.makeFramesAtReactionEvents\
                (output, index, True, True)
            # Double to get a step function.
            # Write each data row.
            for i in range(len(times)):
                row = [times[i]]
                count = sum(reactionCounts[i])
                row.append(count)
                row.extend(populations[i])
                row.extend(reactionCounts[i])
                writer.writerow(row)
                if i != len(times) - 1:
                    row[0] = times[i+1]
                    writer.writerow(row)
            # Blank line between frames.
            writer.writerow([])

    def exportGnuplotDataHistogramFrames(self, modelId, methodId, baseName):
        model = self.models[modelId]
        output = self.output[(modelId, methodId)]
        # For each frame.
        for frameIndex in range(len(output.frameTimes)):
            # For each recorded species.
            for recordedIndex in range(len(output.recordedSpecies)):
                # The species identifier.
                speciesIndex = output.recordedSpecies[recordedIndex]
                speciesId = model.speciesIdentifiers[speciesIndex]
                # The file name.
                fileName = baseName + '-' + str(frameIndex) + '-' +\
                    speciesId + '.dat'
                # Construct the CSV writer.
                writer = csv.writer(open(fileName, 'w'), dialect="gnuplot")
                # The histogram for this frame and species.
                h = output.histograms[frameIndex][recordedIndex]
                # The PMF.
                p = h.getPmf()
                # For each bin.
                for i in range(len(p)):
                    # The center of the bin and the PMF.
                    writer.writerow([h.lowerBound + (i + 0.5) * h.getWidth(),
                                     p[i]])

    def exportGnuplotDataHistogramAverage(self, modelId, methodId, baseName):
        model = self.models[modelId]
        output = self.output[(modelId, methodId)]
        # For each recorded species.
        for recordedIndex in range(len(output.recordedSpecies)):
            # The species identifier.
            speciesIndex = output.recordedSpecies[recordedIndex]
            speciesId = model.speciesIdentifiers[speciesIndex]
            # The file name.
            fileName = baseName + '-' + speciesId + '.dat'
            # Construct the CSV writer.
            writer = csv.writer(open(fileName, 'w'), dialect="gnuplot")
            # The histogram for this frame and species.
            h = output.histograms[recordedIndex]
            # The PMF.
            p = h.getPmf()
            # For each bin.
            for i in range(len(p)):
                # The center of the bin and the PMF.
                writer.writerow([h.lowerBound + (i + 0.5) * h.getWidth(), p[i]])

    def exportGnuplotScriptTrajectory(self, modelId, methodId, baseName):
        assert modelId in self.models
        model = self.models[modelId]
        output = self.output[(modelId, methodId)]
        f = open(baseName + '.gnu', 'w')
        dataName = baseName + '.dat'
        # The plot size.
        f.write('set size %s, %s\n' %
                (self.preferences.data['gnuplot']['X Scale'],
                 self.preferences.data['gnuplot']['Y Scale']))

        # If any species were recorded.
        if output.recordedSpecies:
            # Plot the populations together.
            offset = 3
            f.write('set title "' + model.id + '"\n')
            f.write('set xlabel "Time"\n')
            f.write('set ylabel "Population"\n')
            f.write('set key top\n')
            f.write('set terminal jpeg\n')
            f.write('set output "' + baseName + '-Populations.jpg"\n')
            f.write('plot \\\n')
            style = self.preferences.data['gnuplot']['Style']
            for n in range(len(output.recordedSpecies)):
                index = output.recordedSpecies[n]
                identifier = model.speciesIdentifiers[index]
                f.write('"' + dataName + '" using 1:' + str(n + offset) + 
                        ' title "' + identifier + 
                        '" with ' + style)
                if n != len(output.recordedSpecies) - 1:
                    f.write(',\\\n')
                else:
                    f.write('\n')
            f.write('\n')
        # Plot each recorded species separately.
        for n in range(len(output.recordedSpecies)):
            index = output.recordedSpecies[n]
            identifier = model.speciesIdentifiers[index]
            f.write('set title "' + model.id + '"\n')
            f.write('set xlabel "Time"\n')
            f.write('set ylabel "' + identifier + '"\n')
            f.write('set key off\n')
            f.write('set terminal jpeg\n')
            f.write('set output "' + baseName + '-' + identifier + '.jpg"\n')
            f.write('plot \\\n')
            f.write('"' + dataName + '" using 1:' + str(n + offset) + 
                    ' title "' + identifier + '" with ' + style + '\n\n')

        # If any reactions were recorded.
        if output.recordedReactions:
            # Plot the reaction counts.
            offset = 3 + len(output.recordedSpecies)
            f.write('set ylabel "Reaction Counts"\n')
            f.write('set key left\n')
            f.write('set output "' + baseName + '-Reactions.jpg"\n')
            f.write('plot \\\n')
            for n in range(len(output.recordedReactions)):
                index = output.recordedReactions[n]
                identifier = model.reactions[index].id
                f.write('"' + dataName + '" using 1:' + str(n + offset) + 
                        ' title "' + identifier + '" with ' + style)
                if n != len(model.reactions) - 1:
                    f.write(',\\\n')
                else:
                    f.write('\n')
        # Plot the the individual reactions.
        for n in range(len(output.recordedReactions)):
            index = output.recordedReactions[n]
            identifier = model.reactions[index].id
            f.write('set ylabel "' + identifier + '"\n')
            f.write('set key off\n')
            f.write('set output "' + baseName + '-' + identifier + '.jpg"\n')
            f.write('plot \\\n')
            f.write('"' + dataName + '" using 1:' + str(n + offset) + 
                    ' title "' + identifier + '" with ' + style + '\n\n')
        f.close()

    def exportGnuplotScriptHistogramFrames(self, modelId, methodId, baseName):
        model = self.models[modelId]
        output = self.output[(modelId, methodId)]
        f = open(baseName + '.gnu', 'w')
        # The common plotting commands.
        f.write('set size %s, %s\n' %
                (self.preferences.data['gnuplot']['X Scale'],
                 self.preferences.data['gnuplot']['Y Scale']))
        f.write('set xlabel "Population"\n')
        f.write('set ylabel "Probability"\n')
        f.write('set key off\n')
        f.write('set style fill solid 0.5\n')
        f.write('set terminal jpeg\n\n')
        # For each frame.
        for frameIndex in range(len(output.frameTimes)):
            # For each recorded species.
            for recordedIndex in range(len(output.recordedSpecies)):
                # The species identifier.
                speciesIndex = output.recordedSpecies[recordedIndex]
                speciesId = model.speciesIdentifiers[speciesIndex]
                # The file names.
                suffix = '-' + str(frameIndex) + '-' + speciesId
                dataName = baseName + suffix + '.dat'
                outputName = baseName + suffix + '.jpg'
                # The commands for this histogram.
                f.write('set title "' + model.id + ', Time = ' + 
                        str(output.frameTimes[frameIndex]) + '"\n')
                f.write('set output "' + outputName + '"\n')
                f.write('plot "' + dataName + '" using 1:2 with boxes\n\n')

    def exportGnuplotScriptHistogramAverage(self, modelId, methodId, baseName):
        model = self.models[modelId]
        output = self.output[(modelId, methodId)]
        f = open(baseName + '.gnu', 'w')
        # The common plotting commands.
        f.write('set size %s, %s\n' %
                (self.preferences.data['gnuplot']['X Scale'],
                 self.preferences.data['gnuplot']['Y Scale']))
        f.write('set xlabel "Population"\n')
        f.write('set ylabel "Probability"\n')
        f.write('set key off\n')
        f.write('set style fill solid 0.5\n')
        f.write('set terminal jpeg\n\n')
        f.write('set title "' + model.id + '"\n')
        # For each recorded species.
        for recordedIndex in range(len(output.recordedSpecies)):
            # The species identifier.
            speciesIndex = output.recordedSpecies[recordedIndex]
            speciesId = model.speciesIdentifiers[speciesIndex]
            # The file names.
            suffix = '-' + speciesId
            dataName = baseName + suffix + '.dat'
            outputName = baseName + suffix + '.jpg'
            # The commands for this histogram.
            f.write('set output "' + outputName + '"\n')
            f.write('plot "' + dataName + '" using 1:2 with boxes\n\n')

    # Validity.

    def hasErrorsInModel(self, modelId, methodId):
        """Return None if the model is valid. Otherwise return an error
        message."""
        if methodId:
            isDiscrete = self.methods[methodId].isDiscrete()
        else:
            isDiscrete = False
        return self.models[modelId].hasErrors(isDiscrete)

    def hasErrorsInMethod(self, id):
        """Return None if the methods are valid. Otherwise
        return an error message."""
        return self.methods[id].hasErrors()

def main():
    state = State()
    state.read('../examples/cain/DecayingDimerizing.xml')
    state.write(open('tmp.xml', 'w'))

if __name__ == '__main__':
    main()