1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/*
Metric
Copyright (C) 2006 Yangli Hector Yee
This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
*/
#define _GNU_SOURCE
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include "lpyramid.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#if HAVE_STDINT_H
# include <stdint.h>
#elif HAVE_INTTYPES_H
# include <inttypes.h>
#elif HAVE_SYS_INT_TYPES_H
# include <sys/int_types.h>
#elif defined(_MSC_VER)
typedef __int8 int8_t;
typedef unsigned __int8 uint8_t;
typedef __int16 int16_t;
typedef unsigned __int16 uint16_t;
typedef __int32 int32_t;
typedef unsigned __int32 uint32_t;
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
# ifndef HAVE_UINT64_T
# define HAVE_UINT64_T 1
# endif
# ifndef INT16_MIN
# define INT16_MIN (-32767-1)
# endif
# ifndef INT16_MAX
# define INT16_MAX (32767)
# endif
# ifndef UINT16_MAX
# define UINT16_MAX (65535)
# endif
#else
#error Cannot find definitions for fixed-width integral types (uint8_t, uint32_t, etc.)
#endif
#include "pdiff.h"
#ifndef M_PI
#define M_PI 3.14159265f
#endif
#ifndef __USE_ISOC99
#define expf exp
#define powf pow
#define fabsf fabs
#define sqrtf sqrt
#define log10f log10
#endif
/*
* Given the adaptation luminance, this function returns the
* threshold of visibility in cd per m^2
* TVI means Threshold vs Intensity function
* This version comes from Ward Larson Siggraph 1997
*/
static float
tvi (float adaptation_luminance)
{
/* returns the threshold luminance given the adaptation luminance
units are candelas per meter squared
*/
float log_a, r, result;
log_a = log10f(adaptation_luminance);
if (log_a < -3.94f) {
r = -2.86f;
} else if (log_a < -1.44f) {
r = powf(0.405f * log_a + 1.6f , 2.18f) - 2.86f;
} else if (log_a < -0.0184f) {
r = log_a - 0.395f;
} else if (log_a < 1.9f) {
r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f;
} else {
r = log_a - 1.255f;
}
result = powf(10.0f , r);
return result;
}
/* computes the contrast sensitivity function (Barten SPIE 1989)
* given the cycles per degree (cpd) and luminance (lum)
*/
static float
csf (float cpd, float lum)
{
float a, b, result;
a = 440.0f * powf((1.0f + 0.7f / lum), -0.2f);
b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f);
result = a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd));
return result;
}
/*
* Visual Masking Function
* from Daly 1993
*/
static float
mask (float contrast)
{
float a, b, result;
a = powf(392.498f * contrast, 0.7f);
b = powf(0.0153f * a, 4.0f);
result = powf(1.0f + b, 0.25f);
return result;
}
/* convert Adobe RGB (1998) with reference white D65 to XYZ */
static void
AdobeRGBToXYZ (float r, float g, float b, float *x, float *y, float *z)
{
/* matrix is from http://www.brucelindbloom.com/ */
*x = r * 0.576700f + g * 0.185556f + b * 0.188212f;
*y = r * 0.297361f + g * 0.627355f + b * 0.0752847f;
*z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f;
}
static void
XYZToLAB (float x, float y, float z, float *L, float *A, float *B)
{
static float xw = -1;
static float yw;
static float zw;
const float epsilon = 216.0f / 24389.0f;
const float kappa = 24389.0f / 27.0f;
float f[3];
float r[3];
int i;
/* reference white */
if (xw < 0) {
AdobeRGBToXYZ(1, 1, 1, &xw, &yw, &zw);
}
r[0] = x / xw;
r[1] = y / yw;
r[2] = z / zw;
for (i = 0; i < 3; i++) {
if (r[i] > epsilon) {
f[i] = powf(r[i], 1.0f / 3.0f);
} else {
f[i] = (kappa * r[i] + 16.0f) / 116.0f;
}
}
*L = 116.0f * f[1] - 16.0f;
*A = 500.0f * (f[0] - f[1]);
*B = 200.0f * (f[1] - f[2]);
}
static uint32_t
_get_pixel (const uint32_t *data, int i)
{
return data[i];
}
static unsigned char
_get_red (const uint32_t *data, int i)
{
uint32_t pixel;
uint8_t alpha;
pixel = _get_pixel (data, i);
alpha = (pixel & 0xff000000) >> 24;
if (alpha == 0)
return 0;
else
return (((pixel & 0x00ff0000) >> 16) * 255 + alpha / 2) / alpha;
}
static unsigned char
_get_green (const uint32_t *data, int i)
{
uint32_t pixel;
uint8_t alpha;
pixel = _get_pixel (data, i);
alpha = (pixel & 0xff000000) >> 24;
if (alpha == 0)
return 0;
else
return (((pixel & 0x0000ff00) >> 8) * 255 + alpha / 2) / alpha;
}
static unsigned char
_get_blue (const uint32_t *data, int i)
{
uint32_t pixel;
uint8_t alpha;
pixel = _get_pixel (data, i);
alpha = (pixel & 0xff000000) >> 24;
if (alpha == 0)
return 0;
else
return (((pixel & 0x000000ff) >> 0) * 255 + alpha / 2) / alpha;
}
static void *
xmalloc (size_t size)
{
void *buf;
buf = malloc (size);
if (buf == NULL) {
fprintf (stderr, "Out of memory.\n");
exit (1);
}
return buf;
}
int
pdiff_compare (cairo_surface_t *surface_a,
cairo_surface_t *surface_b,
double gamma,
double luminance,
double field_of_view)
{
unsigned int dim = (cairo_image_surface_get_width (surface_a)
* cairo_image_surface_get_height (surface_a));
unsigned int i;
/* assuming colorspaces are in Adobe RGB (1998) convert to XYZ */
float *aX;
float *aY;
float *aZ;
float *bX;
float *bY;
float *bZ;
float *aLum;
float *bLum;
float *aA;
float *bA;
float *aB;
float *bB;
unsigned int x, y, w, h;
lpyramid_t *la, *lb;
float num_one_degree_pixels, pixels_per_degree, num_pixels;
unsigned int adaptation_level;
float cpd[MAX_PYR_LEVELS];
float F_freq[MAX_PYR_LEVELS - 2];
float csf_max;
const uint32_t *data_a, *data_b;
unsigned int pixels_failed;
w = cairo_image_surface_get_width (surface_a);
h = cairo_image_surface_get_height (surface_a);
if (w < 3 || h < 3) /* too small for the Laplacian convolution */
return -1;
aX = xmalloc (dim * sizeof (float));
aY = xmalloc (dim * sizeof (float));
aZ = xmalloc (dim * sizeof (float));
bX = xmalloc (dim * sizeof (float));
bY = xmalloc (dim * sizeof (float));
bZ = xmalloc (dim * sizeof (float));
aLum = xmalloc (dim * sizeof (float));
bLum = xmalloc (dim * sizeof (float));
aA = xmalloc (dim * sizeof (float));
bA = xmalloc (dim * sizeof (float));
aB = xmalloc (dim * sizeof (float));
bB = xmalloc (dim * sizeof (float));
data_a = (uint32_t *) cairo_image_surface_get_data (surface_a);
data_b = (uint32_t *) cairo_image_surface_get_data (surface_b);
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
float r, g, b, l;
i = x + y * w;
r = powf(_get_red (data_a, i) / 255.0f, gamma);
g = powf(_get_green (data_a, i) / 255.0f, gamma);
b = powf(_get_blue (data_a, i) / 255.0f, gamma);
AdobeRGBToXYZ(r,g,b,&aX[i],&aY[i],&aZ[i]);
XYZToLAB(aX[i], aY[i], aZ[i], &l, &aA[i], &aB[i]);
r = powf(_get_red (data_b, i) / 255.0f, gamma);
g = powf(_get_green (data_b, i) / 255.0f, gamma);
b = powf(_get_blue (data_b, i) / 255.0f, gamma);
AdobeRGBToXYZ(r,g,b,&bX[i],&bY[i],&bZ[i]);
XYZToLAB(bX[i], bY[i], bZ[i], &l, &bA[i], &bB[i]);
aLum[i] = aY[i] * luminance;
bLum[i] = bY[i] * luminance;
}
}
la = lpyramid_create (aLum, w, h);
lb = lpyramid_create (bLum, w, h);
num_one_degree_pixels = (float) (2 * tan(field_of_view * 0.5 * M_PI / 180) * 180 / M_PI);
pixels_per_degree = w / num_one_degree_pixels;
num_pixels = 1;
adaptation_level = 0;
for (i = 0; i < MAX_PYR_LEVELS; i++) {
adaptation_level = i;
if (num_pixels > num_one_degree_pixels) break;
num_pixels *= 2;
}
cpd[0] = 0.5f * pixels_per_degree;
for (i = 1; i < MAX_PYR_LEVELS; i++) cpd[i] = 0.5f * cpd[i - 1];
csf_max = csf(3.248f, 100.0f);
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) F_freq[i] = csf_max / csf( cpd[i], 100.0f);
pixels_failed = 0;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int index = x + y * w;
float contrast[MAX_PYR_LEVELS - 2];
float F_mask[MAX_PYR_LEVELS - 2];
float factor;
float delta;
float adapt;
bool pass;
float sum_contrast = 0;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
float n1 = fabsf(lpyramid_get_value (la,x,y,i) - lpyramid_get_value (la,x,y,i + 1));
float n2 = fabsf(lpyramid_get_value (lb,x,y,i) - lpyramid_get_value (lb,x,y,i + 1));
float numerator = (n1 > n2) ? n1 : n2;
float d1 = fabsf(lpyramid_get_value(la,x,y,i+2));
float d2 = fabsf(lpyramid_get_value(lb,x,y,i+2));
float denominator = (d1 > d2) ? d1 : d2;
if (denominator < 1e-5f) denominator = 1e-5f;
contrast[i] = numerator / denominator;
sum_contrast += contrast[i];
}
if (sum_contrast < 1e-5) sum_contrast = 1e-5f;
adapt = lpyramid_get_value(la,x,y,adaptation_level) + lpyramid_get_value(lb,x,y,adaptation_level);
adapt *= 0.5f;
if (adapt < 1e-5) adapt = 1e-5f;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
F_mask[i] = mask(contrast[i] * csf(cpd[i], adapt));
}
factor = 0;
for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
factor += contrast[i] * F_freq[i] * F_mask[i] / sum_contrast;
}
if (factor < 1) factor = 1;
if (factor > 10) factor = 10;
delta = fabsf(lpyramid_get_value(la,x,y,0) - lpyramid_get_value(lb,x,y,0));
pass = true;
/* pure luminance test */
if (delta > factor * tvi(adapt)) {
pass = false;
} else {
/* CIE delta E test with modifications */
float color_scale = 1.0f;
float da = aA[index] - bA[index];
float db = aB[index] - bB[index];
float delta_e;
/* ramp down the color test in scotopic regions */
if (adapt < 10.0f) {
color_scale = 1.0f - (10.0f - color_scale) / 10.0f;
color_scale = color_scale * color_scale;
}
da = da * da;
db = db * db;
delta_e = (da + db) * color_scale;
if (delta_e > factor) {
pass = false;
}
}
if (!pass)
pixels_failed++;
}
}
free (aX);
free (aY);
free (aZ);
free (bX);
free (bY);
free (bZ);
free (aLum);
free (bLum);
lpyramid_destroy (la);
lpyramid_destroy (lb);
free (aA);
free (bA);
free (aB);
free (bB);
return pixels_failed;
}
|