File: numericalderivative.c

package info (click to toggle)
calceph 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 15,944 kB
  • sloc: ansic: 21,414; fortran: 4,054; python: 1,569; sh: 197; makefile: 5
file content (272 lines) | stat: -rwxr-xr-x 9,094 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*-----------------------------------------------------------------*/
/*! 
  \file numericalderivative.c 
  \brief Compute an approximation of the derivative function for the tests.

  \author  M. Gastineau 
           Astronomie et Systemes Dynamiques, IMCCE, CNRS, Observatoire de Paris. 

   Copyright, 2016-2021, CNRS
   email of the author : Mickael.Gastineau@obspm.fr

  History:                                                                
*/
/*-----------------------------------------------------------------*/

/*-----------------------------------------------------------------*/
/* License  of this file :
 This file is "triple-licensed", you have to choose one  of the three licenses 
 below to apply on this file.
 
    CeCILL-C
    	The CeCILL-C license is close to the GNU LGPL.
    	( http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html )
   
 or CeCILL-B
        The CeCILL-B license is close to the BSD.
        (http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.txt)
  
 
 or CeCILL v2.1
      The CeCILL license is compatible with the GNU GPL.
      ( http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html )
 

This library is governed by the CeCILL-C, CeCILL-B or the CeCILL license under 
French law and abiding by the rules of distribution of free software.  
You can  use, modify and/ or redistribute the software under the terms 
of the CeCILL-C,CeCILL-B or CeCILL license as circulated by CEA, CNRS and INRIA  
at the following URL "http://www.cecill.info". 

As a counterpart to the access to the source code and  rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty  and the software's author,  the holder of the
economic rights,  and the successive licensors  have only  limited
liability. 

In this respect, the user's attention is drawn to the risks associated
with loading,  using,  modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean  that it is complicated to manipulate,  and  that  also
therefore means  that it is reserved for developers  and  experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or 
data to be ensured and,  more generally, to use and operate it in the 
same conditions as regards security. 

The fact that you are presently reading this means that you have had
knowledge of the CeCILL-C,CeCILL-B or CeCILL license and that you accept its terms.
*/
/*-----------------------------------------------------------------*/

#include "calcephconfig.h"
#if HAVE_STDIO_H
#include <stdio.h>
#endif
#include "calceph.h"
#include "numericalderivative.h"

/* static values for myfunc_dfridr */
static t_calcephbin *s_eph = NULL;

static double s_JD0;

static int s_target = -1;

static int s_center = -1;

static int s_unit = -1;

static int s_indcomp = -1;

/*-----------------------------------------------------------------*/
/* return abs(x)
 */
/*-----------------------------------------------------------------*/
static double myabs(double x)
{
    if (x != x)
        return 1E300;
    return (x > 0 ? x : -x);
}

/*-----------------------------------------------------------------*/
/* return max(x,y)
 */
/*-----------------------------------------------------------------*/
static double mymax(double x, double y)
{
    return (x > y ? x : y);
}

/*-----------------------------------------------------------------*/
/* based on dfridr : Numercial Recipes p 188/189 (Chapter 5. Evaluation of Functions)
 */
/*-----------------------------------------------------------------*/
static double dfridr(double (*func) (double), double x, double h, double *err)
{
#define CON 1.4E0
#define CON2 (CON*CON)
#define BIG 1.0e30
#define NTAB 10
#define SAFE 2.0E0
    int i, j;

    double errt, fac,  hh, ans;

    double a[NTAB + 1][NTAB + 1];

    ans = -1E300;
    if (h == 0.E0)
        return -1E300;
    hh = h;
    a[1][1] = ((*func) (x + hh) - (*func) (x - hh)) / (2.0E0 * hh);
    *err = BIG;
    for (i = 2; i <= NTAB; i++)
    {
        hh /= CON;
        a[1][i] = ((*func) (x + hh) - (*func) (x - hh)) / (2.0E0 * hh);
        fac = CON2;
        for (j = 2; j <= i; j++)
        {
            a[j][i] = (a[j - 1][i] * fac - a[j - 1][i - 1]) / (fac - 1.0E0);
            fac = CON2 * fac;
            errt = mymax(myabs(a[j][i] - a[j - 1][i]), myabs(a[j][i] - a[j - 1][i - 1]));
            if (errt <= *err)
            {
                *err = errt;
                ans = a[j][i];
            }
        }
        if (myabs(a[i][i] - a[i - 1][i - 1]) >= SAFE * (*err))
            break;
    }
    return ans;
}

/*-----------------------------------------------------------------*/
/* evaluate the first derivative function using calceph_compute_unit at time (since JD0)
*/
/*-----------------------------------------------------------------*/
static double myfunc_first_derivative_compute(double time)
{
    double PV[6];
    double factunit = 1.E0;
    if ((s_unit&CALCEPH_UNIT_SEC)!=0) factunit=86400E0;
    calceph_compute_unit(s_eph, s_JD0, time/factunit, s_target, s_center, s_unit, PV);
    return PV[3 + s_indcomp];
}

/*-----------------------------------------------------------------*/
/* evaluate the second derivative function 
 using myfunc_first_derivative_compute at time (since JD0)
*/
/*-----------------------------------------------------------------*/
static double myfunc_second_derivative_compute(double time)
{
    double err;
    double factunit = 1.E0;
    if ((s_unit&CALCEPH_UNIT_SEC)!=0) factunit=86400E0;

    return dfridr(myfunc_first_derivative_compute, time, 1E-1*factunit, &err);
}

/*-----------------------------------------------------------------*/
/* evaluate the first and second derivative unsing calceph_compute_unit and dfridr 
*/
/*-----------------------------------------------------------------*/
int tests_calceph_evaluate_derivate_compute(t_calcephbin * eph, double JD0, double time, int target,
                                    int center, int unit, double PV[6])
{
    double err;
    double factunit = 1.E0;

    int j;

    s_eph = eph;
    s_JD0 = JD0;
    s_target = target;
    s_center = center;
    s_unit = unit;
    if ((unit&CALCEPH_UNIT_SEC)!=0) factunit=86400E0;
    for (j = 0; j < 3; j++)
    {
        s_indcomp = j;
        PV[j] = dfridr(myfunc_first_derivative_compute, time*factunit, 1E-1*factunit, &err);
        PV[j + 3] = dfridr(myfunc_second_derivative_compute, time*factunit, 1E-1*factunit, &err);
    }
    return (err<=1);
}


/*-----------------------------------------------------------------*/
/* evaluate the  function 
using calceph_rotangmom_unit at time (since JD0)
*/
/*-----------------------------------------------------------------*/
static double myfunc_rotangmom(double time)
{
    double PV[6];
    double factunit = 1.E0;
    if ((s_unit&CALCEPH_UNIT_SEC)!=0) factunit=86400E0;
    calceph_rotangmom_unit(s_eph, s_JD0, time/factunit, s_target, s_unit, PV);
    return PV[s_indcomp];
}


/*-----------------------------------------------------------------*/
/* evaluate the first derivative function 
using calceph_rotangmom_unit at time (since JD0)
*/
/*-----------------------------------------------------------------*/
static double myfunc_first_derivative_rotangmom(double time)
{
    double err;
    double factunit = 1.E0;
    if ((s_unit&CALCEPH_UNIT_SEC)!=0) factunit=86400E0;

    return dfridr(myfunc_rotangmom, time, 1E-1*factunit, &err);
}

/*-----------------------------------------------------------------*/
/* evaluate the second derivative function 
using myfunc_first_derivative_rotangmom at time (since JD0)
*/
/*-----------------------------------------------------------------*/
static double myfunc_second_derivative_rotangmom(double time)
{
    double err;
    double factunit = 1.E0;
    if ((s_unit&CALCEPH_UNIT_SEC)!=0) factunit=86400E0;

    return dfridr(myfunc_first_derivative_rotangmom, time, 1E-1*factunit, &err);
}

/*-----------------------------------------------------------------*/
/* evaluate the first and second and third derivative 
unsing calceph_rotangmom_unit and dfridr 
*/
/*-----------------------------------------------------------------*/
int tests_calceph_evaluate_derivate_rotangmom(t_calcephbin * eph, double JD0, double time, int target,
                                     int unit, double PV[9])
{
    double err;
    double factunit = 1E0;

    int j;

    s_eph = eph;
    s_JD0 = JD0;
    s_target = target;
    s_unit = unit;
    if ((unit&CALCEPH_UNIT_SEC)!=0) factunit=86400E0;
    for (j = 0; j < 3; j++)
    {
        s_indcomp = j;
        PV[j] = dfridr(myfunc_rotangmom, time*factunit, 1E-1*factunit, &err);
        PV[j + 3] = dfridr(myfunc_first_derivative_rotangmom, time*factunit, 1E-1*factunit, &err);
        PV[j + 6] = dfridr(myfunc_second_derivative_rotangmom, time*factunit, 1E-1*factunit, &err);
    }
    return (err<=1);
}