1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/*
Copyright (C) 2020 Fredrik Johansson
This file is part of Calcium.
Calcium is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "ca.h"
truth_t
ca_check_equal(const ca_t x, const ca_t y, ca_ctx_t ctx)
{
acb_t u, v;
ca_t t;
truth_t res;
truth_t x_alg, y_alg;
slong prec;
if (CA_IS_QQ(x, ctx) && CA_IS_QQ(y, ctx))
{
return fmpq_equal(CA_FMPQ(x), CA_FMPQ(y)) ? T_TRUE : T_FALSE;
}
if (CA_IS_SPECIAL(x) || CA_IS_SPECIAL(y))
{
if (CA_IS_UNKNOWN(x) || CA_IS_UNKNOWN(y))
return T_UNKNOWN;
if (CA_IS_SIGNED_INF(x) && CA_IS_SIGNED_INF(y))
{
ca_t xsign, ysign;
*xsign = *x;
*ysign = *y;
xsign->field &= ~CA_SPECIAL;
ysign->field &= ~CA_SPECIAL;
return ca_check_equal(xsign, ysign, ctx);
}
if (x->field == y->field)
return T_TRUE;
else
return T_FALSE;
}
if (ca_equal_repr(x, y, ctx))
return T_TRUE;
/* same algebraic number field ==> sufficient to compare representation */
if (x->field == y->field && CA_FIELD_IS_NF(CA_FIELD(x, ctx)))
return T_FALSE;
/* Rational number field elements *should* have been demoted to QQ
automatically, but let's do a comparison as a precaution. */
if (CA_FIELD_IS_NF(CA_FIELD(x, ctx)) && CA_IS_QQ(y, ctx))
return nf_elem_equal_fmpq(CA_NF_ELEM(x), CA_FMPQ(y), CA_FIELD_NF(CA_FIELD(x, ctx))) ? T_TRUE : T_FALSE;
if (CA_FIELD_IS_NF(CA_FIELD(y, ctx)) && CA_IS_QQ(x, ctx))
return nf_elem_equal_fmpq(CA_NF_ELEM(y), CA_FMPQ(x), CA_FIELD_NF(CA_FIELD(y, ctx))) ? T_TRUE : T_FALSE;
res = T_UNKNOWN;
acb_init(u);
acb_init(v);
/* for (prec = 64; (prec <= ctx->options[CA_OPT_PREC_LIMIT]) && (res == T_UNKNOWN); prec *= 2) */
prec = 64;
{
ca_get_acb_raw(u, x, prec, ctx);
ca_get_acb_raw(v, y, prec, ctx);
if (!acb_overlaps(u, v))
{
res = T_FALSE;
}
}
acb_clear(u);
acb_clear(v);
x_alg = ca_check_is_algebraic(x, ctx);
y_alg = ca_check_is_algebraic(y, ctx);
if ((x_alg == T_TRUE && y_alg == T_FALSE) ||
(x_alg == T_FALSE && y_alg == T_TRUE))
return T_FALSE;
/* todo: try qqbar computation */
/* we may want to do this selectively; in some cases cancellation in
computing x-y will be helpful; in other cases, subtracting the
terms will make life more difficult */
if (0 && x_alg == T_TRUE && y_alg == T_TRUE)
{
/* ...
qqbar_t a, b;
qqbar_init(a);
qqbar_init(b);
if (ca_get_qqbar(a, x, ctx))
{
if (ca_get_qqbar(b, y, ctx))
{
int eq = qqbar_equal(a, b);
qqbar_clear(a);
qqbar_clear(b);
return eq ? T_TRUE : T_FALSE;
}
}
qqbar_clear(a);
qqbar_clear(b);
*/
}
if (res == T_UNKNOWN)
{
/* check_is_zero may have additional heuristics */
ca_init(t, ctx);
ca_sub(t, x, y, ctx);
res = ca_check_is_zero(t, ctx);
ca_clear(t, ctx);
}
return res;
}
|