File: fmpz_mpoly_evaluate.c

package info (click to toggle)
calcium 0.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,756 kB
  • sloc: ansic: 62,836; python: 2,827; sh: 518; makefile: 163
file content (439 lines) | stat: -rw-r--r-- 11,368 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/*
    Copyright (C) 2018 Daniel Schultz
    Copyright (C) 2021 Fredrik Johansson

    This file is part of Calcium.

    Calcium is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "flint/fmpz_mpoly.h"
#include "ca.h"

/*
The conversion to Horner form can be stated as recursive. However, the call
stack has depth proportial to the length of the input polynomial in the worst
case. Therefore, we must convert it to an iterative algorithm.

The proceedure is

HornerForm(f):

    if f is simple to evaluate

        return eval(f)

    else
        choose a variable v and the smallest non zero exponent e appearing
            in the terms of f

        write f = q * v^e + r  where r is independent of the variable v

        return  HornerForm(q) * v^e + HornerForm(r)
*/

typedef struct
{
    slong f;
    slong r;
    slong v_var;
    fmpz_t v_exp;   /* will be managed as stack grows / shrinks */
    int ret;
} stack_entry_struct;

typedef stack_entry_struct stack_entry_t[1];

/* A = A * X^pow */
/* todo: cache squares, ...? */
static void _ca_pmul(ca_t A, const ca_t X,
                  const fmpz_t pow, ca_t T, ca_ctx_t ctx)
{
    if (fmpz_is_one(pow))
    {
        ca_mul(A, A, X, ctx);
    }
    else
    {
        ca_pow_fmpz(T, X, pow, ctx);
        ca_mul(A, A, T, ctx);
    }
}

void
ca_fmpz_mpoly_evaluate_horner(ca_t A, const fmpz_mpoly_t B, ca_srcptr C, const fmpz_mpoly_ctx_t ctxB, ca_ctx_t ctx)
{
    int ret;
    slong nvars = ctxB->minfo->nvars;
    slong i, j, k, cur, next, f, r, f_prev, r_prev, v;
    slong sp, rp;
    stack_entry_struct * stack;
    ca_struct * regs;
    ca_t temp;
    slong * rtypes;
    ulong totalcounts, maxcounts;
    ulong * counts;
    slong Blen = B->length;
    slong * Blist;
    const fmpz * Bcoeff = B->coeffs;
    const ulong * Bexp = B->exps;
    flint_bitcnt_t Bbits = B->bits;
    slong BN = mpoly_words_per_exp(Bbits, ctxB->minfo);
    fmpz * Buexp;
    fmpz * mdegs;
    fmpz_t score, tz;
    TMP_INIT;

    if (Blen == 0)
    {
        ca_zero(A, ctx);
        return;
    }

    if (Blen == 1 && fmpz_mpoly_is_fmpz(B, ctxB))
    {
        ca_set_fmpz(A, B->coeffs, ctx);
        return;
    }

    /* flint_printf("========================== HORNER %wd ==========================\n", Blen); */

    FLINT_ASSERT(Blen > 0);

    TMP_START;

    fmpz_init(score);
    fmpz_init(tz);

    /* unpack B exponents */
    Buexp = _fmpz_vec_init(nvars*Blen);
    for (i = 0; i < Blen; i++)
        mpoly_get_monomial_ffmpz(Buexp + nvars*i, Bexp + BN*i, Bbits, ctxB->minfo);

    counts = (ulong *) TMP_ALLOC(nvars*sizeof(ulong));
    mdegs = _fmpz_vec_init(nvars);

    /* stack */
    sp = -WORD(1); /* start with empty stack */
    stack = (stack_entry_struct *) TMP_ALLOC(nvars*(Blen + 1)*sizeof(stack_entry_struct));
    Blist = (slong *) TMP_ALLOC(Blen*sizeof(slong));

    /* registers of qqbars */
    rp = 0;
    rtypes = (slong *) TMP_ALLOC((nvars + 1)*sizeof(slong));
    regs   = (ca_struct *) TMP_ALLOC(nvars*sizeof(ca_struct));
    for (i = 0; i < nvars; i++)
        ca_init(regs + i, ctx);
    ca_init(temp, ctx);

    /* polynomials will be stored as link lists */
    for (i = 0; i + 1 < Blen; i++)
        Blist[i] = i + 1;
    Blist[i] = -WORD(1);

    sp++;
    fmpz_init((stack + sp)->v_exp);
    (stack + sp)->ret = 0;
    (stack + sp)->f = 0;

HornerForm:

    f = (stack + sp)->f;

    FLINT_ASSERT(f != -WORD(1)); /* f is not supposed to be zero */

    /* obtain a count of the number of terms containing each variable */
    for (i = 0; i < nvars; i++)
    {
        counts[i] = 0;
        fmpz_set_si(mdegs + i, -WORD(1));
    }

    for (j = f; j != -WORD(1); j = Blist[j])
    {
        for (i = 0; i < nvars; i++)
        {
            if (!fmpz_is_zero(Buexp + nvars*j + i ))
            {
                counts[i]++;
                if (fmpz_sgn(mdegs + i) < 0
                    || fmpz_cmp(mdegs + i, Buexp + nvars*j + i) > 0)
                {
                    fmpz_set(mdegs + i, Buexp + nvars*j + i);
                }
            }
        }
    }

    totalcounts = 0;
    maxcounts = 0;
    v = -WORD(1);
    for (i = 0; i < nvars; i++)
    {
        maxcounts = FLINT_MAX(maxcounts, counts[i]);
        totalcounts += counts[i];
        if (counts[i] != 0)
            v = i;
    }

    /* handle simple cases */
    if (totalcounts == 0)
    {
        FLINT_ASSERT(Blist[f] == -WORD(1));    /* f should have had only one term */
        rtypes[rp] = f;
        goto HornerFormReturn;
    }
    else if (totalcounts == 1)
    {
        FLINT_ASSERT(!fmpz_is_zero(Buexp + nvars*f + v)); /* this term should not be a scalar */

        ca_pow_fmpz(regs + rp, C + v, Buexp + nvars*f + v, ctx);
        ca_mul_fmpz(regs + rp, regs + rp, Bcoeff + f, ctx);

        if (Blist[f] != -WORD(1)) /* if f has a second term */
        {
            /* this term should be a scalar */
            FLINT_ASSERT(fmpz_is_zero(Buexp + nvars*Blist[f] + v));
            ca_add_fmpz(regs + rp, regs + rp,  Bcoeff + Blist[f], ctx);
        }   

        rtypes[rp] = -WORD(1);

        goto HornerFormReturn;
    }

    /* pick best power to pull out */
    k = 0;
    if (maxcounts == 1)
    {
        fmpz_set_si(score, -WORD(1));
        for (i = 0; i < nvars; i++)
        {
            if (counts[i] == 1 && (fmpz_sgn(score) < 0
                                   || fmpz_cmp(mdegs + i, score) < 0))
            {
                FLINT_ASSERT(fmpz_sgn(mdegs + i) > 0);
                fmpz_set(score, mdegs + i);
                k = i;
            }
        }
    }
    else
    {
        fmpz_zero(score);
        for (i = 0; i < nvars; i++)
        {
            if (counts[i] > 1)
            {
                FLINT_ASSERT(fmpz_sgn(mdegs + i) > 0);
                fmpz_mul_ui(tz, mdegs + i, counts[i] - 1);
                if (fmpz_cmp(tz, score) > 0)
                {
                    fmpz_swap(score, tz);
                    k = i;
                }
            }
        }
    }

    /* set variable power v */
    (stack + sp)->v_var = k;
    fmpz_set((stack + sp)->v_exp, mdegs + k);

    /* scan f and split into q and v with f = q*v + r then set f = q */
    r = -WORD(1);
    cur = f;
    f_prev = -WORD(1);
    r_prev = -WORD(1);
    while (cur != -WORD(1))
    {
        next = Blist[cur];
        if (fmpz_is_zero(Buexp + nvars*cur + k))
        {
            if (f_prev == -WORD(1))
                f = Blist[cur];
            else
                Blist[f_prev] = Blist[cur];

            if (r_prev == -WORD(1))
                r = cur;
            else
                Blist[r_prev] = cur;

            Blist[cur] = -WORD(1);
            r_prev = cur;
        }
        else
        {
            /* mdegs[k] should be minimum non zero exponent */
            fmpz_sub(Buexp + nvars*cur + k, Buexp + nvars*cur + k, mdegs + k);
            FLINT_ASSERT(fmpz_sgn(Buexp + nvars*cur + k) >= 0);
            f_prev = cur;
        }
        cur = next;
    }
    (stack + sp)->r = r;

    /* convert the quotient */
    sp++;
    fmpz_init((stack + sp)->v_exp);
    (stack + sp)->ret = 1;
    (stack + sp)->f = f;
    goto HornerForm;

HornerForm1:

    /* convert the remainder */
    r = (stack + sp)->r;
    if (r != -WORD(1))
    {
        /* remainder is non zero */
        rp++;
        FLINT_ASSERT(0 <= rp && rp <= nvars);
        sp++;
        fmpz_init((stack + sp)->v_exp);
        (stack + sp)->ret = 2;
        (stack + sp)->f = r;
        goto HornerForm;

HornerForm2:

        if (rtypes[rp - 1] == -WORD(1) && rtypes[rp] == -WORD(1))
        {
            /* both quotient and remainder are polynomials */
            _ca_pmul(regs + rp - 1, C + (stack + sp)->v_var, (stack + sp)->v_exp, temp, ctx);
            ca_add(temp, regs + rp - 1, regs + rp, ctx);
            ca_swap(temp, regs + rp - 1, ctx);
        }
        else if (rtypes[rp - 1] == -WORD(1) && rtypes[rp] != -WORD(1))
        {
            /* quotient is a polynomial, remainder is a scalar */
            _ca_pmul(regs + rp - 1, C + (stack + sp)->v_var, (stack + sp)->v_exp, temp, ctx);
            ca_add_fmpz(regs + rp - 1, regs + rp - 1, Bcoeff + rtypes[rp], ctx);
        }
        else if (rtypes[rp - 1] != -WORD(1) && rtypes[rp] == -WORD(1))
        {
            /* quotient is a scalar, remainder is a polynomial */
            ca_pow_fmpz(temp, C + (stack + sp)->v_var, (stack + sp)->v_exp, ctx);
            ca_mul_fmpz(temp, temp, Bcoeff + rtypes[rp - 1], ctx);
            ca_add(regs + rp - 1, temp, regs + rp, ctx);
        }
        else
        {
            /* quotient is a scalar, remainder is a scalar */
            FLINT_ASSERT(0);    /* this should have been handled by simple case */
        }
        rp--;
        FLINT_ASSERT(0 <= rp && rp <= nvars);
    }
    else
    {
        /* remainder is zero */
        FLINT_ASSERT(rtypes[rp] == -WORD(1)); /* quotient is not a scalar */

        /* quotient is a polynomial */
        _ca_pmul(regs + rp, C + (stack + sp)->v_var, (stack + sp)->v_exp, temp, ctx);
    }

    rtypes[rp] = -WORD(1);

HornerFormReturn:

    ret = (stack + sp)->ret;
    fmpz_clear((stack + sp)->v_exp);
    sp--;
    if (ret == 1) goto HornerForm1;
    if (ret == 2) goto HornerForm2;

    FLINT_ASSERT(rp == 0);
    FLINT_ASSERT(sp == -WORD(1));

    if (rtypes[rp] == -WORD(1))
    {
        ca_swap(A, regs + rp, ctx);
    }
    else
    {
        ca_set_fmpz(A, Bcoeff + rtypes[rp], ctx);
    }

    for (i = 0; i < nvars; i++)
        ca_clear(regs + i, ctx);
    ca_clear(temp, ctx);

    fmpz_clear(score);
    fmpz_clear(tz);
    _fmpz_vec_clear(mdegs, nvars);
    _fmpz_vec_clear(Buexp, nvars*Blen);

    TMP_END;
}

/* todo: accept fmpz exponents */
void
ca_evaluate_fmpz_mpoly_iter(ca_t res, const fmpz_mpoly_t pol, ca_srcptr x, const fmpz_mpoly_ctx_t ctx, ca_ctx_t cactx)
{
    slong i, j, len, nvars;
    ca_t s, t, u;
    ulong * exp;

    len = fmpz_mpoly_length(pol, ctx);

    if (len == 0)
    {
        ca_zero(res, cactx);
        return;
    }

    if (len == 1 && fmpz_mpoly_is_fmpz(pol, ctx))
    {
        ca_set_fmpz(res, pol->coeffs, cactx);
        return;
    }

    nvars = ctx->minfo->nvars;
    exp = flint_malloc(sizeof(ulong) * nvars);

    ca_init(s, cactx);
    ca_init(t, cactx);
    ca_init(u, cactx);

    for (i = 0; i < len; i++)
    {
        fmpz_mpoly_get_term_exp_ui(exp, pol, i, ctx);

        ca_one(t, cactx);

        for (j = 0; j < nvars; j++)
        {
            if (exp[j] == 1)
            {
                ca_mul(t, t, x + j, cactx);
            }
            else if (exp[j] >= 2)
            {
                ca_pow_ui(u, x + j, exp[j], cactx);
                ca_mul(t, t, u, cactx);
            }
        }

        ca_mul_fmpz(t, t, pol->coeffs + i, cactx);
        ca_add(s, s, t, cactx);
    }

    ca_swap(res, s, cactx);

    flint_free(exp);

    ca_clear(s, cactx);
    ca_clear(t, cactx);
    ca_clear(u, cactx);
}

void
ca_fmpz_mpoly_evaluate(ca_t res, const fmpz_mpoly_t f, ca_srcptr x, const fmpz_mpoly_ctx_t ctx, ca_ctx_t cactx)
{
    ca_fmpz_mpoly_evaluate_horner(res, f, x, ctx, cactx);
}