1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/*
Copyright (C) 2021 Fredrik Johansson
This file is part of Calcium.
Calcium is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "ca.h"
#include "ca_ext.h"
#include "ca_vec.h"
#include "fexpr.h"
#include "fexpr_builtin.h"
#define BINARY_OP(ca_func) \
if (nargs == 2) \
{ \
ca_init(t, ctx); \
fexpr_view_arg(arg, expr, 0); \
success = _ca_set_fexpr(res, inputs, outputs, arg, ctx); \
if (success) \
{ \
fexpr_view_next(arg); \
success = _ca_set_fexpr(t, inputs, outputs, arg, ctx); \
if (success) \
ca_func(res, res, t, ctx); \
} \
ca_clear(t, ctx); \
return success; \
} \
return 0; \
#define UNARY_OP(ca_func) \
if (nargs == 1) \
{ \
fexpr_view_arg(arg, expr, 0); \
success = _ca_set_fexpr(res, inputs, outputs, arg, ctx); \
if (success) \
ca_func(res, res, ctx); \
return success; \
} \
return 0; \
int
_ca_set_fexpr(ca_t res, fexpr_vec_t inputs, ca_vec_t outputs, const fexpr_t expr, ca_ctx_t ctx)
{
if (fexpr_is_integer(expr))
{
_ca_make_fmpq(res, ctx);
fexpr_get_fmpz(CA_FMPQ_NUMREF(res), expr);
fmpz_one(CA_FMPQ_DENREF(res));
return 1;
}
if (fexpr_is_any_builtin_symbol(expr))
{
slong op = FEXPR_BUILTIN_ID(expr->data[0]);
switch (op)
{
case FEXPR_Pi:
ca_pi(res, ctx);
return 1;
case FEXPR_NumberI:
ca_i(res, ctx);
return 1;
case FEXPR_NumberE:
ca_one(res, ctx);
ca_exp(res, res, ctx);
return 1;
case FEXPR_Euler:
ca_euler(res, ctx);
return 1;
case FEXPR_GoldenRatio:
ca_sqrt_ui(res, 5, ctx);
ca_add_ui(res, res, 1, ctx);
ca_div_ui(res, res, 2, ctx);
return 1;
case FEXPR_Infinity:
ca_pos_inf(res, ctx);
return 1;
case FEXPR_UnsignedInfinity:
ca_uinf(res, ctx);
return 1;
case FEXPR_Undefined:
ca_undefined(res, ctx);
return 1;
case FEXPR_Unknown:
ca_unknown(res, ctx);
return 1;
}
return 0;
}
if (fexpr_is_symbol(expr))
{
slong i, num_defs;
num_defs = inputs->length;
/* Treat local definitions as a stack, more recent ones
overriding older ones */
for (i = num_defs - 1; i >= 0; i--)
{
if (fexpr_equal(expr, fexpr_vec_entry(inputs, i)))
{
ca_set(res, ca_vec_entry(outputs, i), ctx);
return 1;
}
}
return 0;
}
if (fexpr_is_any_builtin_call(expr))
{
fexpr_t func, arg;
slong op, i, nargs;
int success;
ca_t t;
nargs = fexpr_nargs(expr);
fexpr_view_func(func, expr);
op = FEXPR_BUILTIN_ID(func->data[0]);
/* Parse local definitions */
if (op == FEXPR_Where)
{
slong num_previous_defs;
num_previous_defs = inputs->length;
success = 1;
/* Parse in reverse order; this assumes definitions are in the form
x = f(y,z), y = g(z), z = h which is what ca_get_fexpr currently
generates. Should this work in both directions (or any order)?
*/
for (i = nargs - 1; i >= 1; i--)
{
fexpr_t defn, symbol, value;
fexpr_view_arg(defn, expr, i);
if (!fexpr_is_builtin_call(defn, FEXPR_Def) || fexpr_nargs(defn) != 2)
{
success = 0;
break;
}
fexpr_view_arg(symbol, defn, 0);
fexpr_view_arg(value, defn, 1);
success = _ca_set_fexpr(res, inputs, outputs, value, ctx);
if (!success)
break;
fexpr_vec_append(inputs, symbol);
ca_vec_append(outputs, res, ctx);
}
if (success)
{
fexpr_view_arg(arg, expr, 0);
success = _ca_set_fexpr(res, inputs, outputs, arg, ctx);
}
/* We are done with the local definitions, so erase anything new. */
fexpr_vec_set_length(inputs, num_previous_defs);
ca_vec_set_length(outputs, num_previous_defs, ctx);
return success;
}
switch (op)
{
/* todo: generalize to non-algebraics; handle large decimals efficiently */
case FEXPR_Decimal:
case FEXPR_PolynomialRootIndexed:
case FEXPR_PolynomialRootNearest:
case FEXPR_AlgebraicNumberSerialized:
{
qqbar_t a;
qqbar_init(a);
success = qqbar_set_fexpr(a, expr);
if (success)
ca_set_qqbar(res, a, ctx);
qqbar_clear(a);
return success;
}
case FEXPR_Pos: UNARY_OP(ca_set)
case FEXPR_Neg: UNARY_OP(ca_neg)
case FEXPR_Sub: BINARY_OP(ca_sub)
case FEXPR_Div: BINARY_OP(ca_div)
case FEXPR_Pow: BINARY_OP(ca_pow)
case FEXPR_Sqrt: UNARY_OP(ca_sqrt)
case FEXPR_Exp: UNARY_OP(ca_exp)
case FEXPR_Log: UNARY_OP(ca_log)
case FEXPR_Sin: UNARY_OP(ca_sin)
case FEXPR_Cos: UNARY_OP(ca_cos)
case FEXPR_Tan: UNARY_OP(ca_tan)
case FEXPR_Cot: UNARY_OP(ca_cot)
case FEXPR_Atan: UNARY_OP(ca_atan)
case FEXPR_Acos: UNARY_OP(ca_acos)
case FEXPR_Asin: UNARY_OP(ca_asin)
case FEXPR_Sign: UNARY_OP(ca_sgn)
case FEXPR_Csgn: UNARY_OP(ca_csgn)
case FEXPR_Arg: UNARY_OP(ca_arg)
case FEXPR_Abs: UNARY_OP(ca_abs)
case FEXPR_Re: UNARY_OP(ca_re)
case FEXPR_Im: UNARY_OP(ca_im)
case FEXPR_Conjugate: UNARY_OP(ca_conj)
case FEXPR_Floor: UNARY_OP(ca_floor)
case FEXPR_Ceil: UNARY_OP(ca_ceil)
case FEXPR_Gamma: UNARY_OP(ca_gamma)
case FEXPR_Erf: UNARY_OP(ca_erf)
case FEXPR_Erfc: UNARY_OP(ca_erfc)
case FEXPR_Erfi: UNARY_OP(ca_erfi)
case FEXPR_Add:
if (nargs == 0)
{
ca_zero(res, ctx);
return 1;
}
fexpr_view_arg(arg, expr, 0);
success = _ca_set_fexpr(res, inputs, outputs, arg, ctx);
if (success && nargs > 1)
{
/* todo: divide and conquer for large nargs? */
ca_init(t, ctx);
for (i = 1; i < nargs && success; i++)
{
fexpr_view_next(arg);
success = _ca_set_fexpr(t, inputs, outputs, arg, ctx);
if (success)
ca_add(res, res, t, ctx);
}
ca_clear(t, ctx);
}
return success;
case FEXPR_Mul:
if (nargs == 0)
{
ca_one(res, ctx);
return 1;
}
fexpr_view_arg(arg, expr, 0);
success = _ca_set_fexpr(res, inputs, outputs, arg, ctx);
if (success && nargs > 1)
{
/* todo: divide and conquer for large nargs? */
ca_init(t, ctx);
for (i = 1; i < nargs && success; i++)
{
fexpr_view_next(arg);
success = _ca_set_fexpr(t, inputs, outputs, arg, ctx);
if (success)
ca_mul(res, res, t, ctx);
}
ca_clear(t, ctx);
}
return success;
}
}
return 0;
}
int
ca_set_fexpr(ca_t res, const fexpr_t expr, ca_ctx_t ctx)
{
int success;
fexpr_vec_t inputs;
ca_vec_t outputs;
fexpr_vec_init(inputs, 0);
ca_vec_init(outputs, 0, ctx);
success = _ca_set_fexpr(res, inputs, outputs, expr, ctx);
fexpr_vec_clear(inputs);
ca_vec_clear(outputs, ctx);
return success;
}
|