File: set_fmpz_mpoly.c

package info (click to toggle)
calcium 0.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,756 kB
  • sloc: ansic: 62,836; python: 2,827; sh: 518; makefile: 163
file content (131 lines) | stat: -rw-r--r-- 3,154 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
    Copyright (C) 2021 Fredrik Johansson

    This file is part of Calcium.

    Calcium is free software: you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.  See <http://www.gnu.org/licenses/>.
*/

#include "fexpr.h"

/*
    Sets *res* to an expression for the multivariate polynomial *poly*
    using the expressions in *vars* as variables. If *vars* is *NULL*,
    the symbols *x1*, *x2*, ..., *xn* are used.
*/

void
fexpr_set_fmpz_mpoly(fexpr_t res, const fmpz_mpoly_t poly, const fexpr_vec_t vars, const fmpz_mpoly_ctx_t ctx)
{
    slong len, nvars, i, j, factors_len;
    fexpr_ptr terms;
    fexpr_ptr factors;
    fexpr_t op, t;
    ulong * exp;

    nvars = ctx->minfo->nvars;
    len = poly->length;

    if (len == 0)
    {
        fexpr_zero(res);
        return;
    }

    if (fmpz_mpoly_is_fmpz(poly, ctx))
    {
        fexpr_set_fmpz(res, poly->coeffs);
        return;
    }

    if (vars == NULL)
    {
        fexpr_vec_t v;
        fexpr_vec_init(v, nvars);

        /* FIXME */
        for (i = 0; i < nvars; i++)
        {
            fexpr_vec_entry(v, i)->data[0] = FEXPR_TYPE_SMALL_SYMBOL | ('x' << 8) | (('1' + i) << 16);
        }

        fexpr_set_fmpz_mpoly(res, poly, v, ctx);
        fexpr_vec_clear(v);
        return;
    }

    exp = flint_malloc(sizeof(ulong) * nvars);
    len = poly->length;

    fexpr_init(t);
    fexpr_init(op);
    factors = _fexpr_vec_init(nvars + 1);
    /* todo: just allocate one array */
    terms = _fexpr_vec_init(len);

    fexpr_set_symbol_str(op, "Mul");

    for (i = 0; i < len; i++)
    {
        int constant_term;

        fmpz_mpoly_get_term_exp_ui(exp, poly, i, ctx);

        factors_len = 0;

        constant_term = (i == len - 1);
        for (j = 0; constant_term && j < nvars; j++)
            if (exp[j] != 0)
                constant_term = 0;

        if (!fmpz_is_one(poly->coeffs + i) || constant_term)
        {
            fexpr_set_fmpz(factors, poly->coeffs + i);
            factors_len = 1;
        }

        for (j = 0; j < nvars; j++)
        {
            if (exp[j] != 0)
            {
                if (exp[j] == 1)
                {
                    fexpr_set(factors + factors_len, fexpr_vec_entry(vars, j));
                }
                else
                {
                    fexpr_set_ui(t, exp[j]);
                    fexpr_pow(factors + factors_len, fexpr_vec_entry(vars, j), t);
                }

                factors_len++;
            }
        }

        if (factors_len == 1)
            fexpr_set(terms + i, factors);
        else
        {
            fexpr_call_vec(terms + i, op, factors, factors_len);
        }
    }

    if (len == 1)
    {
        fexpr_swap(res, terms);
    }
    else
    {
        fexpr_set_symbol_str(op, "Add");
        fexpr_call_vec(res, op, terms, len);
    }

    flint_free(exp);
    _fexpr_vec_clear(factors, nvars + 1);
    _fexpr_vec_clear(terms, len);
    fexpr_clear(op);
    fexpr_clear(t);
}