File: beamextscheme.f

package info (click to toggle)
calculix-ccx 2.11-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 10,188 kB
  • sloc: fortran: 115,312; ansic: 34,480; sh: 374; makefile: 35; perl: 15
file content (208 lines) | stat: -rw-r--r-- 7,294 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
!
!     CalculiX - A 3-dimensional finite element program
!              Copyright (C) 1998-2015 Guido Dhondt
!
!     This program is free software; you can redistribute it and/or
!     modify it under the terms of the GNU General Public License as
!     published by the Free Software Foundation(version 2);
!     
!
!     This program is distributed in the hope that it will be useful,
!     but WITHOUT ANY WARRANTY; without even the implied warranty of 
!     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
!     GNU General Public License for more details.
!
!     You should have received a copy of the GNU General Public License
!     along with this program; if not, write to the Free Software
!     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
      subroutine beamextscheme(yil,ndim,nfield,lakonl,npropstart,prop,
     &  field,mi)
!
!     provides the extrapolation scheme for beams with a cross section
!     which is not rectangular nor elliptical
!
      implicit none
!
      character*8 lakonl
!
      integer npropstart,mi(*),ndim,nfield,j,k,l
!
      real*8 prop(*),ratio,ratio2,yil(ndim,mi(1)),yig(nfield,mi(1)),
     &  field(999,20*mi(3)),r,scal,a8(8,8),pmean1(nfield),
     &  pmean2(nfield),t1,t2,t3,t4,a,b,dummy,shp(4,20),xis(8,3)
!
!     extrapolation from a 2x2x2=8 integration point scheme in a hex to
!     the vertex nodes
!    
      data a8 /2.549,-.683,.183,-.683,-.683,.183,
     &        -.04904,.183,-.683,2.549,-.683,.183,
     &        .183,-.683,.183,-.04904,-.683,.183,
     &        -.683,2.549,.183,-.04904,.183,-.683,
     &        .183,-.683,2.549,-.683,-.04904,.183,
     &        -.683,.183,-.683,.183,-.04904,.183,
     &        2.549,-.683,.183,-.683,.183,-.683,
     &        .183,-.04904,-.683,2.549,-.683,.183,
     &        .183,-.04904,.183,-.683,-.683,.183,
     &        -.683,2.549,-.04904,.183,-.683,.183,
     &        .183,-.683,2.549,-.683/  
!
      if(lakonl(8:8).eq.'P') then
!
!        pipe cross section
!
!        the axis of the pipe is along the local xi-direction
!        the integration points are at positions +-0.57 along
!        the xi-axis. At each of these positions there are 8
!        integration points in the eta-zeta plane at one radial
!        position and
!        equally spaced along the circumferential direction
!
!        ratio of inner radius to outer radius
!
         ratio=(prop(npropstart+1)-prop(npropstart+2))/
     &              prop(npropstart+1)
         ratio2=ratio*ratio
!
!        radial location of integration points
!
         r=dsqrt((ratio2+1.d0)/2.d0)
!
!        scaling factor between the radial location of the integration
!        points and the regular location of C3D20R integration points
!
         scal=dsqrt(2.d0/3.d0)/r
!
!        calculating the mean values at each of the two xi-positions
!
         do k=1,nfield
            pmean1(k)=(yil(k,2)+yil(k,4)+yil(k,6)+yil(k,8))/4.d0
            pmean2(k)=(yil(k,10)+yil(k,12)+yil(k,14)+yil(k,16))/4.d0
         enddo
!
!        translating the results from the integration points of the
!        pipe section to the integration points of the C3D20R element
!
         do k=1,nfield
            yig(k,1)=pmean1(k)+(yil(k,6)-pmean1(k))*scal
            yig(k,2)=pmean2(k)+(yil(k,14)-pmean2(k))*scal
            yig(k,3)=pmean1(k)+(yil(k,8)-pmean1(k))*scal
            yig(k,4)=pmean2(k)+(yil(k,16)-pmean2(k))*scal
            yig(k,5)=pmean1(k)+(yil(k,4)-pmean1(k))*scal
            yig(k,6)=pmean2(k)+(yil(k,12)-pmean2(k))*scal
            yig(k,7)=pmean1(k)+(yil(k,2)-pmean1(k))*scal
            yig(k,8)=pmean2(k)+(yil(k,10)-pmean2(k))*scal
         enddo
!
!        standard extrapolation for the C3D20R element
!
         do j=1,8
            do k=1,nfield
               field(k,j)=0.d0
               do l=1,8
                  field(k,j)=field(k,j)+a8(j,l)*yig(k,l)
               enddo
            enddo
         enddo
!
      elseif(lakonl(8:8).eq.'B') then
!
!        BOX cross section
         a=prop(npropstart+1)
         b=prop(npropstart+2)
         t1=prop(npropstart+3)
         t2=prop(npropstart+4)
         t3=prop(npropstart+5)
         t4=prop(npropstart+6)
c
c        new local coordinates for node points of element
c
         xis(1,1) = -1/sqrt(3.0d0)
         xis(1,2) = -(t4-t2-2*b)/((-2*b)+t2+t4)
         xis(1,3) = (t3-t1+2*a)/((-2*a)+t1+t3)
         xis(2,1) = 1/sqrt(3.0d0)
         xis(2,2) = -(t4-t2-2*b)/((-2*b)+t2+t4)
         xis(2,3) = (t3-t1+2*a)/((-2*a)+t1+t3)
         xis(3,1) = 1/sqrt(3.0d0)
         xis(3,2) = -(t4-t2+2*b)/((-2*b)+t2+t4)
         xis(3,3) = (t3-t1+2*a)/((-2*a)+t1+t3)
         xis(4,1) = -1/sqrt(3.0d0)
         xis(4,2) = -(t4-t2+2*b)/((-2*b)+t2+t4)
         xis(4,3) = (t3-t1+2*a)/((-2*a)+t1+t3)
         xis(5,1) = -1/sqrt(3.0d0)
         xis(5,2) = -(t4-t2-2*b)/((-2*b)+t2+t4)
         xis(5,3) = (t3-t1-2*a)/((-2*a)+t1+t3)
         xis(6,1) = 1/sqrt(3.0d0)
         xis(6,2) = -(t4-t2-2*b)/((-2*b)+t2+t4)
         xis(6,3) = (t3-t1-2*a)/((-2*a)+t1+t3)
         xis(7,1) = 1/sqrt(3.0d0)
         xis(7,2) = -(t4-t2+2*b)/((-2*b)+t2+t4)
         xis(7,3) = (t3-t1-2*a)/((-2*a)+t1+t3)
!
      elseif(lakonl(8:8).eq.'B') then
!
!        BOX cross section
         a=prop(npropstart+1)
         b=prop(npropstart+2)
         t1=prop(npropstart+3)
         t2=prop(npropstart+4)
         t3=prop(npropstart+5)
         t4=prop(npropstart+6)
c
c        new local coordinates for node points of element
c
         xis(1,1) = -1/sqrt(3.0d0)
         xis(1,2) = -(t4-t2-2*b)/((-2*b)+t2+t4)
         xis(1,3) = (t3-t1+2*a)/((-2*a)+t1+t3)
         xis(2,1) = 1/sqrt(3.0d0)
         xis(2,2) = -(t4-t2-2*b)/((-2*b)+t2+t4)
         xis(2,3) = (t3-t1+2*a)/((-2*a)+t1+t3)
         xis(3,1) = 1/sqrt(3.0d0)
         xis(3,2) = -(t4-t2+2*b)/((-2*b)+t2+t4)
         xis(3,3) = (t3-t1+2*a)/((-2*a)+t1+t3)
         xis(4,1) = -1/sqrt(3.0d0)
         xis(4,2) = -(t4-t2+2*b)/((-2*b)+t2+t4)
         xis(4,3) = (t3-t1+2*a)/((-2*a)+t1+t3)
         xis(5,1) = -1/sqrt(3.0d0)
         xis(5,2) = -(t4-t2-2*b)/((-2*b)+t2+t4)
         xis(5,3) = (t3-t1-2*a)/((-2*a)+t1+t3)
         xis(6,1) = 1/sqrt(3.0d0)
         xis(6,2) = -(t4-t2-2*b)/((-2*b)+t2+t4)
         xis(6,3) = (t3-t1-2*a)/((-2*a)+t1+t3)
         xis(7,1) = 1/sqrt(3.0d0)
         xis(7,2) = -(t4-t2+2*b)/((-2*b)+t2+t4)
         xis(7,3) = (t3-t1-2*a)/((-2*a)+t1+t3)
         xis(8,1) = -1/sqrt(3.0d0)
         xis(8,2) = -(t4-t2+2*b)/((-2*b)+t2+t4)
         xis(8,3) = (t3-t1-2*a)/((-2*a)+t1+t3)
         xis(8,1) = -1/sqrt(3.0d0)
         xis(8,2) = -(t4-t2+2*b)/((-2*b)+t2+t4)
         xis(8,3) = (t3-t1-2*a)/((-2*a)+t1+t3)
!
!        extrapolate from int points to node points
!
         do k=1,nfield
            yig(k,1)=yil(k,9)
            yig(k,2)=yil(k,25)
            yig(k,3)=yil(k,29)
            yig(k,4)=yil(k,13)
            yig(k,5)=yil(k,5)
            yig(k,6)=yil(k,21)
            yig(k,7)=yil(k,17)
            yig(k,8)=yil(k,1)
         enddo
!
         do j=1,8
            call shape8h(xis(j,1),xis(j,2),xis(j,3),dummy,dummy,shp,1)
            do k=1,nfield
               field(k,j)=0.0d0
               do l=1,8
                 field(k,j)=field(k,j)+shp(4,l)*yig(k,l)
               enddo
            enddo
         enddo
!
      endif
!     
      return
      end