File: e_corio.f

package info (click to toggle)
calculix-ccx 2.11-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 10,188 kB
  • sloc: fortran: 115,312; ansic: 34,480; sh: 374; makefile: 35; perl: 15
file content (324 lines) | stat: -rw-r--r-- 10,583 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
!
!     CalculiX - A 3-dimensional finite element program
!              Copyright (C) 1998-2015 Guido Dhondt
!
!     This program is free software; you can redistribute it and/or
!     modify it under the terms of the GNU General Public License as
!     published by the Free Software Foundation(version 2);
!     
!
!     This program is distributed in the hope that it will be useful,
!     but WITHOUT ANY WARRANTY; without even the implied warranty of 
!     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
!     GNU General Public License for more details.
!
!     You should have received a copy of the GNU General Public License
!     along with this program; if not, write to the Free Software
!     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
!
      subroutine e_corio(co,nk,konl,lakonl,p1,p2,omx,bodyfx,nbody,s,sm,
     &  ff,nelem,elcon,nelcon,rhcon,nrhcon,alcon,nalcon,alzero,
     &  ielmat,ielorien,norien,orab,ntmat_,
     &  t0,t1,ithermal,vold,iperturb,nelemload,
     &  sideload,xload,nload,idist,sti,stx,iexpl,plicon,
     &  nplicon,plkcon,nplkcon,xstiff,npmat_,dtime,
     &  matname,mi,ncmat_,ttime,time,istep,iinc,nmethod,ielprop,prop)
!
!     computation of the element matrix and rhs for the element with
!     the topology in konl
!
!     ff: rhs without temperature and eigenstress contribution
!
!     nmethod=0: check for positive Jacobian
!     nmethod=1: stiffness matrix + right hand side
!     nmethod=2: stiffness matrix + mass matrix
!     nmethod=3: static stiffness + buckling stiffness
!     nmethod=4: stiffness matrix + mass matrix
!
      implicit none
!
      logical mass,stiffness,buckling,rhsi
!
      character*8 lakonl
      character*20 sideload(*)
      character*80 matname(*),amat
!
      integer konl(20),ifaceq(8,6),nelemload(2,*),nk,nbody,nelem,
     &  mi(*),mattyp,ithermal,iperturb(*),nload,idist,i,j,k,l,i1,i2,j1,
     &  nmethod,k1,l1,ii,jj,ii1,jj1,id,ipointer,ig,m1,m2,m3,m4,kk,
     &  nelcon(2,*),nrhcon(*),nalcon(2,*),ielmat(mi(3),*),
     &  ielorien(mi(3),*),null,ielprop(*),
     &  ntmat_,nope,nopes,norien,ihyper,iexpl,kode,imat,mint2d,
     &  mint3d,ifacet(7,4),nopev,iorien,istiff,ncmat_,
     &  ifacew(8,5),intscheme,n,ipointeri,ipointerj,istep,iinc,
     &  layer,kspt,jltyp,iflag,iperm(60),m,iscale,ne0,
     &  nplicon(0:ntmat_,*),nplkcon(0:ntmat_,*),npmat_
!
      real*8 co(3,*),xl(3,20),shp(4,20),xs2(3,7),prop(*),
     &  s(60,60),w(3,3),p1(3),p2(3),bodyf(3),bodyfx(3),ff(60),
     &  bf(3),q(3),shpj(4,20),elcon(0:ncmat_,ntmat_,*),
     &  rhcon(0:1,ntmat_,*),xkl(3,3),eknlsign,reltime,
     &  alcon(0:6,ntmat_,*),alzero(*),orab(7,*),t0(*),t1(*),
     &  anisox(3,3,3,3),voldl(0:mi(2),20),vo(3,3),
     &  xl2(3,8),xsj2(3),shp2(7,8),vold(0:mi(2),*),xload(2,*),
     &  v(3,3,3,3),
     &  om,omx,e,un,al,um,xi,et,ze,tt,const,xsj,xsjj,sm(60,60),
     &  sti(6,mi(1),*),stx(6,mi(1),*),s11,s22,s33,s12,s13,s23,s11b,
     &  s22b,s33b,s12b,s13b,s23b,t0l,t1l,
     &  senergy,senergyb,rho,elas(21),
     &  sume,factorm,factore,alp,elconloc(21),eth(6),
     &  weight,coords(3),dmass,xl1(3,8),term
!
      real*8 plicon(0:2*npmat_,ntmat_,*),plkcon(0:2*npmat_,ntmat_,*),
     &  xstiff(27,mi(1),*),plconloc(802),dtime,ttime,time,
     &  sax(60,60),ffax(60),gs(8,4),a
!
      data iflag /3/
      data iperm /13,14,-15,16,17,-18,19,20,-21,22,23,-24,
     &            1,2,-3,4,5,-6,7,8,-9,10,11,-12,
     &            37,38,-39,40,41,-42,43,44,-45,46,47,-48,
     &            25,26,-27,28,29,-30,31,32,-33,34,35,-36,
     &            49,50,-51,52,53,-54,55,56,-57,58,59,-60/
!
      include "gauss.f"
!
      null=0
!
      imat=ielmat(1,nelem)
      amat=matname(imat)
!
c     Bernhardi start
      if(lakonl(1:5).eq.'C3D8I') then
         nope=11
      elseif(lakonl(4:4).eq.'2') then
c     Bernhardi end
         nope=20
      elseif(lakonl(4:4).eq.'8') then
         nope=8
      elseif(lakonl(4:5).eq.'10') then
         nope=10
      elseif(lakonl(4:4).eq.'4') then
         nope=4
      elseif(lakonl(4:5).eq.'15') then
         nope=15
      elseif(lakonl(4:4).eq.'6') then
         nope=6
      elseif(lakonl(1:2).eq.'ES') then
         read(lakonl(8:8),'(i1)') nope
         nope=nope+1
      endif
!
      if(lakonl(4:5).eq.'8R') then
         mint3d=1
      elseif(lakonl(4:7).eq.'20RB') then
         if((lakonl(8:8).eq.'R').or.(lakonl(8:8).eq.'C')) then
            mint3d=50
         else
            call beamintscheme(lakonl,mint3d,ielprop(nelem),prop,
     &           null,xi,et,ze,weight)
         endif
      elseif((lakonl(4:4).eq.'8').or.(lakonl(4:6).eq.'20R')) then
         if((lakonl(7:7).eq.'A').or.(lakonl(7:7).eq.'S').or.
     &        (lakonl(7:7).eq.'E')) then
            mint3d=4
         else
            mint3d=8
         endif
      elseif(lakonl(4:4).eq.'2') then
         mint3d=27
      elseif(lakonl(4:5).eq.'10') then
         mint3d=4
      elseif(lakonl(4:4).eq.'4') then
         mint3d=1
      elseif(lakonl(4:5).eq.'15') then
         mint3d=9
      elseif(lakonl(4:4).eq.'6') then
         mint3d=2
      else
         mint3d=0
      endif
!     
!     computation of the coordinates of the local nodes
!     
      do i=1,nope
         do j=1,3
            xl(j,i)=co(j,konl(i))
         enddo
      enddo
!     
!     initialisation of s
!
      do i=1,3*nope
        do j=1,3*nope
          s(i,j)=0.d0
        enddo
      enddo
!
!     computation of the matrix: loop over the Gauss points
!
      do kk=1,mint3d
         if(lakonl(4:5).eq.'8R') then
            xi=gauss3d1(1,kk)
            et=gauss3d1(2,kk)
            ze=gauss3d1(3,kk)
            weight=weight3d1(kk)
         elseif(lakonl(4:7).eq.'20RB') then
            if((lakonl(8:8).eq.'R').or.(lakonl(8:8).eq.'C')) then
               xi=gauss3d13(1,kk)
               et=gauss3d13(2,kk)
               ze=gauss3d13(3,kk)
               weight=weight3d13(kk)
            else
               call beamintscheme(lakonl,mint3d,ielprop(nelem),prop,
     &              kk,xi,et,ze,weight)
            endif
         elseif((lakonl(4:4).eq.'8').or.(lakonl(4:6).eq.'20R')) 
     &           then
            xi=gauss3d2(1,kk)
            et=gauss3d2(2,kk)
            ze=gauss3d2(3,kk)
            weight=weight3d2(kk)
         elseif(lakonl(4:4).eq.'2') then
            xi=gauss3d3(1,kk)
            et=gauss3d3(2,kk)
            ze=gauss3d3(3,kk)
            weight=weight3d3(kk)
         elseif(lakonl(4:5).eq.'10') then
            xi=gauss3d5(1,kk)
            et=gauss3d5(2,kk)
            ze=gauss3d5(3,kk)
            weight=weight3d5(kk)
         elseif(lakonl(4:4).eq.'4') then
            xi=gauss3d4(1,kk)
            et=gauss3d4(2,kk)
            ze=gauss3d4(3,kk)
            weight=weight3d4(kk)
         elseif(lakonl(4:5).eq.'15') then
            xi=gauss3d8(1,kk)
            et=gauss3d8(2,kk)
            ze=gauss3d8(3,kk)
            weight=weight3d8(kk)
         elseif(lakonl(4:4).eq.'6') then
            xi=gauss3d7(1,kk)
            et=gauss3d7(2,kk)
            ze=gauss3d7(3,kk)
            weight=weight3d7(kk)
         endif
!     
!     calculation of the shape functions and their derivatives
!     in the gauss point
!     
c     Bernhardi start
         if(lakonl(1:5).eq.'C3D8R') then
            call shape8hr(xl,xsj,shp,gs,a)
         elseif(lakonl(1:5).eq.'C3D8I') then
            call shape8hu(xi,et,ze,xl,xsj,shp,iflag)
         else if(nope.eq.20) then
c     Bernhardi end
            if(lakonl(7:7).eq.'A') then
               call shape20h_ax(xi,et,ze,xl,xsj,shp,iflag)
            elseif((lakonl(7:7).eq.'E').or.(lakonl(7:7).eq.'S')) then
               call shape20h_pl(xi,et,ze,xl,xsj,shp,iflag)
            else
               call shape20h(xi,et,ze,xl,xsj,shp,iflag)
            endif
         elseif(nope.eq.8) then
            call shape8h(xi,et,ze,xl,xsj,shp,iflag)
         elseif(nope.eq.10) then
            call shape10tet(xi,et,ze,xl,xsj,shp,iflag)
         elseif(nope.eq.4) then
            call shape4tet(xi,et,ze,xl,xsj,shp,iflag)
         elseif(nope.eq.15) then
            call shape15w(xi,et,ze,xl,xsj,shp,iflag)
         else
            call shape6w(xi,et,ze,xl,xsj,shp,iflag)
         endif
!
!           check the jacobian determinant
!
         if(xsj.lt.1.d-20) then
            write(*,*) '*ERROR in e_c3d: nonpositive jacobian'
            write(*,*) '       determinant in element',nelem
            write(*,*)
            xsj=dabs(xsj)
            nmethod=0
         endif
!
!           material data and local stiffness matrix
!
         istiff=1
         call materialdata_me(elcon,nelcon,rhcon,nrhcon,alcon,nalcon,
     &        imat,amat,iorien,coords,orab,ntmat_,elas,rho,
     &        nelem,ithermal,alzero,mattyp,t0l,t1l,
     &        ihyper,istiff,elconloc,eth,kode,plicon,
     &        nplicon,plkcon,nplkcon,npmat_,
     &        plconloc,mi(1),dtime,nelem,kk,
     &        xstiff,ncmat_)
!
!
!           initialisation for the body forces
!
         om=2.d0*rho*dsqrt(omx)*weight
!
!           incorporating the jacobian determinant in the shape
!           functions
!
         xsjj=dsqrt(xsj)
         do i1=1,nope
            shpj(1,i1)=shp(1,i1)*xsjj
            shpj(2,i1)=shp(2,i1)*xsjj
            shpj(3,i1)=shp(3,i1)*xsjj
            shpj(4,i1)=shp(4,i1)*xsj
         enddo
!
         jj1=1
         do jj=1,nope
!     
            ii1=1
            do ii=1,jj
!     
!     Coriolis matrix
!     
               dmass=
     &              om*shpj(4,ii)*shp(4,jj)
               s(ii1,jj1+1)=s(ii1,jj1+1)-p2(3)*dmass
               s(ii1,jj1+2)=s(ii1,jj1+2)+p2(2)*dmass
               s(ii1+1,jj1)=s(ii1+1,jj1)+p2(3)*dmass
               s(ii1+1,jj1+2)=s(ii1+1,jj1+2)-p2(1)*dmass
               s(ii1+2,jj1)=s(ii1+2,jj1)-p2(2)*dmass
               s(ii1+2,jj1+1)=s(ii1+2,jj1+1)+p2(1)*dmass
!     
               ii1=ii1+3
            enddo
            jj1=jj1+3
         enddo
      enddo
!     
!     for axially symmetric and plane stress/strain elements: 
!     complete s and sm
!     
      if((lakonl(6:7).eq.'RA').or.(lakonl(6:7).eq.'RS').or.
     &     (lakonl(6:7).eq.'RE')) then
         do i=1,60
            do j=i,60
               k=abs(iperm(i))
               l=abs(iperm(j))
               if(k.gt.l) then
                  m=k
                  k=l
                  l=m
               endif
               sax(i,j)=s(k,l)*iperm(i)*iperm(j)/(k*l)
            enddo
         enddo
         do i=1,60
            do j=i,60
               s(i,j)=s(i,j)+sax(i,j)
            enddo
         enddo
!     
      endif
!     
      return
      end