1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
|
/* This file is part of the KDE project
* Copyright (C) 2008-2009 Jan Hambrecht <jaham@gmx.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "KoPathSegment.h"
#include "KoPathPoint.h"
#include <kdebug.h>
#include <QPainterPath>
#include <QTransform>
#include <math.h>
/// Maximal recursion depth for finding root params
const int MaxRecursionDepth = 64;
/// Flatness tolerance for finding root params
const qreal FlatnessTolerance = ldexp(1.0,-MaxRecursionDepth-1);
class BezierSegment
{
public:
BezierSegment(int degree = 0, QPointF *p = 0)
{
if (degree) {
for (int i = 0; i <= degree; ++i)
points.append(p[i]);
}
}
void setDegree(int degree)
{
points.clear();
if (degree) {
for (int i = 0; i <= degree; ++i)
points.append(QPointF());
}
}
int degree() const
{
return points.count() - 1;
}
QPointF point(int index) const
{
if (static_cast<int>(index) > degree())
return QPointF();
return points[index];
}
void setPoint(int index, const QPointF &p)
{
if (static_cast<int>(index) > degree())
return;
points[index] = p;
}
QPointF evaluate(qreal t, BezierSegment *left, BezierSegment *right) const
{
int deg = degree();
if (! deg)
return QPointF();
QVector<QVector<QPointF> > Vtemp(deg + 1);
for (int i = 0; i <= deg; ++i)
Vtemp[i].resize(deg + 1);
/* Copy control points */
for (int j = 0; j <= deg; j++) {
Vtemp[0][j] = points[j];
}
/* Triangle computation */
for (int i = 1; i <= deg; i++) {
for (int j =0 ; j <= deg - i; j++) {
Vtemp[i][j].rx() = (1.0 - t) * Vtemp[i-1][j].x() + t * Vtemp[i-1][j+1].x();
Vtemp[i][j].ry() = (1.0 - t) * Vtemp[i-1][j].y() + t * Vtemp[i-1][j+1].y();
}
}
if (left) {
left->setDegree(deg);
for (int j = 0; j <= deg; j++) {
left->setPoint(j, Vtemp[j][0]);
}
}
if (right) {
right->setDegree(deg);
for (int j = 0; j <= deg; j++) {
right->setPoint(j, Vtemp[deg-j][j]);
}
}
return (Vtemp[deg][0]);
}
QList<qreal> roots(int depth = 0) const
{
QList<qreal> rootParams;
if (! degree())
return rootParams;
// Calculate how often the control polygon crosses the x-axis
// This is the upper limit for the number of roots.
int xAxisCrossings = controlPolygonZeros(points);
if (! xAxisCrossings) {
// No solutions.
return rootParams;
}
else if (xAxisCrossings == 1) {
// Exactly one solution.
// Stop recursion when the tree is deep enough
if (depth >= MaxRecursionDepth) {
// if deep enough, return 1 solution at midpoint
rootParams.append((points.first().x() + points.last().x()) / 2.0);
return rootParams;
}
else if (isFlat(FlatnessTolerance)) {
// Calculate intersection of chord with x-axis.
QPointF chord = points.last() - points.first();
QPointF segStart = points.first();
rootParams.append((chord.x() * segStart.y() - chord.y() * segStart.x()) / - chord.y());
return rootParams;
}
}
// Many solutions. Do recursive midpoint subdivision.
BezierSegment left, right;
evaluate(0.5, &left, &right);
rootParams += left.roots(depth+1);
rootParams += right.roots(depth+1);
return rootParams;
}
static uint controlPolygonZeros(const QList<QPointF> &controlPoints)
{
int controlPointCount = controlPoints.count();
if (controlPointCount < 2)
return 0;
int signChanges = 0;
int currSign = controlPoints[0].y() < 0.0 ? -1 : 1;
int oldSign;
for (short i = 1; i < controlPointCount; ++i) {
oldSign = currSign;
currSign = controlPoints[i].y() < 0.0 ? -1 : 1;
if (currSign != oldSign) {
++signChanges;
}
}
return signChanges;
}
int isFlat (qreal tolerance) const
{
int deg = degree();
// Find the perpendicular distance from each interior control point to
// the line connecting points[0] and points[degree]
qreal *distance = new qreal[deg + 1];
// Derive the implicit equation for line connecting first and last control points
qreal a = points[0].y() - points[deg].y();
qreal b = points[deg].x() - points[0].x();
qreal c = points[0].x() * points[deg].y() - points[deg].x() * points[0].y();
qreal abSquared = (a * a) + (b * b);
for (int i = 1; i < deg; i++) {
// Compute distance from each of the points to that line
distance[i] = a * points[i].x() + b * points[i].y() + c;
if (distance[i] > 0.0) {
distance[i] = (distance[i] * distance[i]) / abSquared;
}
if (distance[i] < 0.0) {
distance[i] = -((distance[i] * distance[i]) / abSquared);
}
}
// Find the largest distance
qreal max_distance_above = 0.0;
qreal max_distance_below = 0.0;
for (int i = 1; i < deg; i++) {
if (distance[i] < 0.0) {
max_distance_below = qMin(max_distance_below, distance[i]);
}
if (distance[i] > 0.0) {
max_distance_above = qMax(max_distance_above, distance[i]);
}
}
delete [] distance;
// Implicit equation for zero line
qreal a1 = 0.0;
qreal b1 = 1.0;
qreal c1 = 0.0;
// Implicit equation for "above" line
qreal a2 = a;
qreal b2 = b;
qreal c2 = c + max_distance_above;
qreal det = a1 * b2 - a2 * b1;
qreal dInv = 1.0/det;
qreal intercept_1 = (b1 * c2 - b2 * c1) * dInv;
// Implicit equation for "below" line
a2 = a;
b2 = b;
c2 = c + max_distance_below;
det = a1 * b2 - a2 * b1;
dInv = 1.0/det;
qreal intercept_2 = (b1 * c2 - b2 * c1) * dInv;
// Compute intercepts of bounding box
qreal left_intercept = qMin(intercept_1, intercept_2);
qreal right_intercept = qMax(intercept_1, intercept_2);
qreal error = 0.5 * (right_intercept-left_intercept);
return (error < tolerance);
}
#ifndef NDEBUG
void printDebug() const
{
int index = 0;
foreach (const QPointF &p, points) {
kDebug(30006) << QString("P%1 ").arg(index++) << p;
}
}
#endif
private:
QList<QPointF> points;
};
class KoPathSegment::Private
{
public:
Private(KoPathSegment *qq, KoPathPoint *p1, KoPathPoint *p2)
: first(p1),
second(p2),
q(qq)
{
}
/// calculates signed distance of given point from segment chord
qreal distanceFromChord(const QPointF &point) const;
/// Returns the chord length, i.e. the distance between first and last control point
qreal chordLength() const;
/// Returns intersection of lines if one exists
QList<QPointF> linesIntersection(const KoPathSegment &segment) const;
/// Returns parameters for curve extrema
QList<qreal> extrema() const;
/// Returns parameters for curve roots
QList<qreal> roots() const;
/**
* The DeCasteljau algorithm for parameter t.
* @param t the parameter to evaluate at
* @param p1 the new control point of the segment start (for cubic curves only)
* @param p2 the first control point at t
* @param p3 the new point at t
* @param p4 the second control point at t
* @param p3 the new control point of the segment end (for cubic curbes only)
*/
void deCasteljau(qreal t, QPointF *p1, QPointF *p2, QPointF *p3, QPointF *p4, QPointF *p5) const;
KoPathPoint *first;
KoPathPoint *second;
KoPathSegment *q;
};
void KoPathSegment::Private::deCasteljau(qreal t, QPointF *p1, QPointF *p2, QPointF *p3, QPointF *p4, QPointF *p5) const
{
if (!q->isValid())
return;
int deg = q->degree();
QPointF q[4];
q[0] = first->point();
if (deg == 2) {
q[1] = first->activeControlPoint2() ? first->controlPoint2() : second->controlPoint1();
} else if (deg == 3) {
q[1] = first->controlPoint2();
q[2] = second->controlPoint1();
}
q[deg] = second->point();
// points of the new segment after the split point
QPointF p[3];
// the De Casteljau algorithm
for (unsigned short j = 1; j <= deg; ++j) {
for (unsigned short i = 0; i <= deg - j; ++i) {
q[i] = (1.0 - t) * q[i] + t * q[i + 1];
}
p[j - 1] = q[0];
}
if (deg == 2) {
if (p2)
*p2 = p[0];
if (p3)
*p3 = p[1];
if (p4)
*p4 = q[1];
} else if (deg == 3) {
if (p1)
*p1 = p[0];
if (p2)
*p2 = p[1];
if (p3)
*p3 = p[2];
if (p4)
*p4 = q[1];
if (p5)
*p5 = q[2];
}
}
QList<qreal> KoPathSegment::Private::roots() const
{
QList<qreal> rootParams;
if (!q->isValid())
return rootParams;
// Calculate how often the control polygon crosses the x-axis
// This is the upper limit for the number of roots.
int xAxisCrossings = BezierSegment::controlPolygonZeros(q->controlPoints());
if (!xAxisCrossings) {
// No solutions.
}
else if (xAxisCrossings == 1 && q->isFlat(0.01 / chordLength())) {
// Exactly one solution.
// Calculate intersection of chord with x-axis.
QPointF chord = second->point() - first->point();
QPointF segStart = first->point();
rootParams.append((chord.x() * segStart.y() - chord.y() * segStart.x()) / - chord.y());
}
else {
// Many solutions. Do recursive midpoint subdivision.
QPair<KoPathSegment, KoPathSegment> splitSegments = q->splitAt(0.5);
rootParams += splitSegments.first.d->roots();
rootParams += splitSegments.second.d->roots();
}
return rootParams;
}
QList<qreal> KoPathSegment::Private::extrema() const
{
int deg = q->degree();
if (deg <= 1)
return QList<qreal>();
QList<qreal> params;
/*
* The basic idea for calculating the extrama for bezier segments
* was found in comp.graphics.algorithms:
*
* Both the x coordinate and the y coordinate are polynomial. Newton told
* us that at a maximum or minimum the derivative will be zero.
*
* We have a helpful trick for the derivatives: use the curve r(t) defined by
* differences of successive control points.
* Setting r(t) to zero and using the x and y coordinates of differences of
* successive control points lets us find the parameters t, where the original
* bezier curve has a minimum or a maximum.
*/
if (deg == 2) {
/*
* For quadratic bezier curves r(t) is a linear Bezier curve:
*
* 1
* r(t) = Sum Bi,1(t) *Pi = B0,1(t) * P0 + B1,1(t) * P1
* i=0
*
* r(t) = (1-t) * P0 + t * P1
*
* r(t) = (P1 - P0) * t + P0
*/
// calcualting the differences between successive control points
QPointF cp = first->activeControlPoint2() ?
first->controlPoint2() : second->controlPoint1();
QPointF x0 = cp - first->point();
QPointF x1 = second->point() - cp;
// calculating the coefficents
QPointF a = x1 - x0;
QPointF c = x0;
if (a.x() != 0.0)
params.append(-c.x() / a.x());
if (a.y() != 0.0)
params.append(-c.y() / a.y());
} else if (deg == 3) {
/*
* For cubic bezier curves r(t) is a quadratic Bezier curve:
*
* 2
* r(t) = Sum Bi,2(t) *Pi = B0,2(t) * P0 + B1,2(t) * P1 + B2,2(t) * P2
* i=0
*
* r(t) = (1-t)^2 * P0 + 2t(1-t) * P1 + t^2 * P2
*
* r(t) = (P2 - 2*P1 + P0) * t^2 + (2*P1 - 2*P0) * t + P0
*
*/
// calcualting the differences between successive control points
QPointF x0 = first->controlPoint2() - first->point();
QPointF x1 = second->controlPoint1() - first->controlPoint2();
QPointF x2 = second->point() - second->controlPoint1();
// calculating the coefficents
QPointF a = x2 - 2.0 * x1 + x0;
QPointF b = 2.0 * x1 - 2.0 * x0;
QPointF c = x0;
// calculating parameter t at minimum/maximum in x-direction
if (a.x() == 0.0) {
params.append(- c.x() / b.x());
} else {
qreal rx = b.x() * b.x() - 4.0 * a.x() * c.x();
if (rx < 0.0)
rx = 0.0;
params.append((-b.x() + sqrt(rx)) / (2.0*a.x()));
params.append((-b.x() - sqrt(rx)) / (2.0*a.x()));
}
// calculating parameter t at minimum/maximum in y-direction
if (a.y() == 0.0) {
params.append(- c.y() / b.y());
} else {
qreal ry = b.y() * b.y() - 4.0 * a.y() * c.y();
if (ry < 0.0)
ry = 0.0;
params.append((-b.y() + sqrt(ry)) / (2.0*a.y()));
params.append((-b.y() - sqrt(ry)) / (2.0*a.y()));
}
}
return params;
}
qreal KoPathSegment::Private::distanceFromChord(const QPointF &point) const
{
// the segments chord
QPointF chord = second->point() - first->point();
// the point relative to the segment
QPointF relPoint = point - first->point();
// project point to chord
qreal scale = chord.x() * relPoint.x() + chord.y() * relPoint.y();
scale /= chord.x() * chord.x() + chord.y() * chord.y();
// the vector form the point to the projected point on the chord
QPointF diffVec = scale * chord - relPoint;
// the unsigned distance of the point to the chord
qreal distance = sqrt(diffVec.x() * diffVec.x() + diffVec.y() * diffVec.y());
// determine sign of the distance using the cross product
if (chord.x()*relPoint.y() - chord.y()*relPoint.x() > 0) {
return distance;
} else {
return -distance;
}
}
qreal KoPathSegment::Private::chordLength() const
{
QPointF chord = second->point() - first->point();
return sqrt(chord.x() * chord.x() + chord.y() * chord.y());
}
QList<QPointF> KoPathSegment::Private::linesIntersection(const KoPathSegment &segment) const
{
//kDebug(30006) << "intersecting two lines";
/*
we have to line segments:
s1 = A + r * (B-A), s2 = C + s * (D-C) for r,s in [0,1]
if s1 and s2 intersect we set s1 = s2 so we get these two equations:
Ax + r * (Bx-Ax) = Cx + s * (Dx-Cx)
Ay + r * (By-Ay) = Cy + s * (Dy-Cy)
which we can solve to get r and s
*/
QList<QPointF> isects;
QPointF A = first->point();
QPointF B = second->point();
QPointF C = segment.first()->point();
QPointF D = segment.second()->point();
qreal denom = (B.x() - A.x()) * (D.y() - C.y()) - (B.y() - A.y()) * (D.x() - C.x());
qreal num_r = (A.y() - C.y()) * (D.x() - C.x()) - (A.x() - C.x()) * (D.y() - C.y());
// check if lines are collinear
if (denom == 0.0 && num_r == 0.0)
return isects;
qreal num_s = (A.y() - C.y()) * (B.x() - A.x()) - (A.x() - C.x()) * (B.y() - A.y());
qreal r = num_r / denom;
qreal s = num_s / denom;
// check if intersection is inside our line segments
if (r < 0.0 || r > 1.0)
return isects;
if (s < 0.0 || s > 1.0)
return isects;
// calculate the actual intersection point
isects.append(A + r * (B - A));
return isects;
}
///////////////////
KoPathSegment::KoPathSegment(KoPathPoint * first, KoPathPoint * second)
: d(new Private(this, first, second))
{
}
KoPathSegment::KoPathSegment(const KoPathSegment & segment)
: d(new Private(this, 0, 0))
{
if (! segment.first() || segment.first()->parent())
setFirst(segment.first());
else
setFirst(new KoPathPoint(*segment.first()));
if (! segment.second() || segment.second()->parent())
setSecond(segment.second());
else
setSecond(new KoPathPoint(*segment.second()));
}
KoPathSegment::KoPathSegment(const QPointF &p0, const QPointF &p1)
: d(new Private(this, new KoPathPoint(), new KoPathPoint()))
{
d->first->setPoint(p0);
d->second->setPoint(p1);
}
KoPathSegment::KoPathSegment(const QPointF &p0, const QPointF &p1, const QPointF &p2)
: d(new Private(this, new KoPathPoint(), new KoPathPoint()))
{
d->first->setPoint(p0);
d->first->setControlPoint2(p1);
d->second->setPoint(p2);
}
KoPathSegment::KoPathSegment(const QPointF &p0, const QPointF &p1, const QPointF &p2, const QPointF &p3)
: d(new Private(this, new KoPathPoint(), new KoPathPoint()))
{
d->first->setPoint(p0);
d->first->setControlPoint2(p1);
d->second->setControlPoint1(p2);
d->second->setPoint(p3);
}
KoPathSegment &KoPathSegment::operator=(const KoPathSegment &rhs)
{
if (this == &rhs)
return (*this);
if (! rhs.first() || rhs.first()->parent())
setFirst(rhs.first());
else
setFirst(new KoPathPoint(*rhs.first()));
if (! rhs.second() || rhs.second()->parent())
setSecond(rhs.second());
else
setSecond(new KoPathPoint(*rhs.second()));
return (*this);
}
KoPathSegment::~KoPathSegment()
{
if (d->first && ! d->first->parent())
delete d->first;
if (d->second && ! d->second->parent())
delete d->second;
delete d;
}
KoPathPoint *KoPathSegment::first() const
{
return d->first;
}
void KoPathSegment::setFirst(KoPathPoint *first)
{
if (d->first && !d->first->parent())
delete d->first;
d->first = first;
}
KoPathPoint *KoPathSegment::second() const
{
return d->second;
}
void KoPathSegment::setSecond(KoPathPoint *second)
{
if (d->second && !d->second->parent())
delete d->second;
d->second = second;
}
bool KoPathSegment::isValid() const
{
return (d->first && d->second);
}
bool KoPathSegment::operator==(const KoPathSegment &rhs) const
{
if (!isValid() && !rhs.isValid())
return true;
if (isValid() && !rhs.isValid())
return false;
if (!isValid() && rhs.isValid())
return false;
return (*first() == *rhs.first() && *second() == *rhs.second());
}
int KoPathSegment::degree() const
{
if (!d->first || !d->second)
return -1;
bool c1 = d->first->activeControlPoint2();
bool c2 = d->second->activeControlPoint1();
if (!c1 && !c2)
return 1;
if (c1 && c2)
return 3;
return 2;
}
QPointF KoPathSegment::pointAt(qreal t) const
{
if (!isValid())
return QPointF();
if (degree() == 1) {
return d->first->point() + t * (d->second->point() - d->first->point());
} else {
QPointF splitP;
d->deCasteljau(t, 0, 0, &splitP, 0, 0);
return splitP;
}
}
QRectF KoPathSegment::controlPointRect() const
{
if (!isValid())
return QRectF();
QList<QPointF> points = controlPoints();
QRectF bbox(points.first(), points.first());
foreach(const QPointF &p, points) {
bbox.setLeft(qMin(bbox.left(), p.x()));
bbox.setRight(qMax(bbox.right(), p.x()));
bbox.setTop(qMin(bbox.top(), p.y()));
bbox.setBottom(qMax(bbox.bottom(), p.y()));
}
if (degree() == 1) {
// adjust bounding rect of horizontal and vertical lines
if (bbox.height() == 0.0)
bbox.setHeight(0.1);
if (bbox.width() == 0.0)
bbox.setWidth(0.1);
}
return bbox;
}
QRectF KoPathSegment::boundingRect() const
{
if (!isValid())
return QRectF();
QRectF rect = QRectF(d->first->point(), d->second->point()).normalized();
if (degree() == 1) {
// adjust bounding rect of horizontal and vertical lines
if (rect.height() == 0.0)
rect.setHeight(0.1);
if (rect.width() == 0.0)
rect.setWidth(0.1);
} else {
/*
* The basic idea for calculating the axis aligned bounding box (AABB) for bezier segments
* was found in comp.graphics.algorithms:
* Use the points at the extrema of the curve to calculate the AABB.
*/
foreach (qreal t, d->extrema()) {
if (t >= 0.0 && t <= 1.0) {
QPointF p = pointAt(t);
rect.setLeft(qMin(rect.left(), p.x()));
rect.setRight(qMax(rect.right(), p.x()));
rect.setTop(qMin(rect.top(), p.y()));
rect.setBottom(qMax(rect.bottom(), p.y()));
}
}
}
return rect;
}
QList<QPointF> KoPathSegment::intersections(const KoPathSegment &segment) const
{
// this function uses a technique known as bezier clipping to find the
// intersections of the two bezier curves
QList<QPointF> isects;
if (!isValid() || !segment.isValid())
return isects;
int degree1 = degree();
int degree2 = segment.degree();
QRectF myBound = boundingRect();
QRectF otherBound = segment.boundingRect();
//kDebug(30006) << "my boundingRect =" << myBound;
//kDebug(30006) << "other boundingRect =" << otherBound;
if (!myBound.intersects(otherBound)) {
//kDebug(30006) << "segments do not intersect";
return isects;
}
// short circuit lines intersection
if (degree1 == 1 && degree2 == 1) {
//kDebug(30006) << "intersecting two lines";
isects += d->linesIntersection(segment);
return isects;
}
// first calculate the fat line L by using the signed distances
// of the control points from the chord
qreal dmin, dmax;
if (degree1 == 1) {
dmin = 0.0;
dmax = 0.0;
} else if (degree1 == 2) {
qreal d1;
if (d->first->activeControlPoint2())
d1 = d->distanceFromChord(d->first->controlPoint2());
else
d1 = d->distanceFromChord(d->second->controlPoint1());
dmin = qMin(0.0, 0.5 * d1);
dmax = qMax(0.0, 0.5 * d1);
} else {
qreal d1 = d->distanceFromChord(d->first->controlPoint2());
qreal d2 = d->distanceFromChord(d->second->controlPoint1());
if (d1*d2 > 0.0) {
dmin = 0.75 * qMin(qreal(0.0), qMin(d1, d2));
dmax = 0.75 * qMax(qreal(0.0), qMax(d1, d2));
} else {
dmin = 4.0 / 9.0 * qMin(qreal(0.0), qMin(d1, d2));
dmax = 4.0 / 9.0 * qMax(qreal(0.0), qMax(d1, d2));
}
}
//kDebug(30006) << "using fat line: dmax =" << dmax << " dmin =" << dmin;
/*
the other segment is given as a bezier curve of the form:
(1) P(t) = sum_i P_i * B_{n,i}(t)
our chord line is of the form:
(2) ax + by + c = 0
we can determine the distance d(t) from any point P(t) to our chord
by substituting formula (1) into formula (2):
d(t) = sum_i d_i B_{n,i}(t), where d_i = a*x_i + b*y_i + c
which forms another explicit bezier curve
D(t) = (t,d(t)) = sum_i D_i B_{n,i}(t)
now values of t for which P(t) lies outside of our fat line L
corrsponds to values of t for which D(t) lies above d = dmax or
below d = dmin
we can determine parameter ranges of t for which P(t) is guaranteed
to lie outside of L by identifying ranges of t which the convex hull
of D(t) lies above dmax or below dmin
*/
// now calculate the control points of D(t) by using the signed
// distances of P_i to our chord
KoPathSegment dt;
if (degree2 == 1) {
QPointF p0(0.0, d->distanceFromChord(segment.first()->point()));
QPointF p1(1.0, d->distanceFromChord(segment.second()->point()));
dt = KoPathSegment(p0, p1);
} else if (degree2 == 2) {
QPointF p0(0.0, d->distanceFromChord(segment.first()->point()));
QPointF p1 = segment.first()->activeControlPoint2()
? QPointF(0.5, d->distanceFromChord(segment.first()->controlPoint2()))
: QPointF(0.5, d->distanceFromChord(segment.second()->controlPoint1()));
QPointF p2(1.0, d->distanceFromChord(segment.second()->point()));
dt = KoPathSegment(p0, p1, p2);
} else if (degree2 == 3) {
QPointF p0(0.0, d->distanceFromChord(segment.first()->point()));
QPointF p1(1. / 3., d->distanceFromChord(segment.first()->controlPoint2()));
QPointF p2(2. / 3., d->distanceFromChord(segment.second()->controlPoint1()));
QPointF p3(1.0, d->distanceFromChord(segment.second()->point()));
dt = KoPathSegment(p0, p1, p2, p3);
} else {
//kDebug(30006) << "invalid degree of segment -> exiting";
return isects;
}
// get convex hull of the segment D(t)
QList<QPointF> hull = dt.convexHull();
// now calculate intersections with the line y1 = dmin, y2 = dmax
// with the convex hull edges
int hullCount = hull.count();
qreal tmin = 1.0, tmax = 0.0;
bool intersectionsFoundMax = false;
bool intersectionsFoundMin = false;
for (int i = 0; i < hullCount; ++i) {
QPointF p1 = hull[i];
QPointF p2 = hull[(i+1) % hullCount];
//kDebug(30006) << "intersecting hull edge (" << p1 << p2 << ")";
// hull edge is completely above dmax
if (p1.y() > dmax && p2.y() > dmax)
continue;
// hull egde is completely below dmin
if (p1.y() < dmin && p2.y() < dmin)
continue;
if (p1.x() == p2.x()) {
// vertical edge
bool dmaxIntersection = (dmax < qMax(p1.y(), p2.y()) && dmax > qMin(p1.y(), p2.y()));
bool dminIntersection = (dmin < qMax(p1.y(), p2.y()) && dmin > qMin(p1.y(), p2.y()));
if (dmaxIntersection || dminIntersection) {
tmin = qMin(tmin, p1.x());
tmax = qMax(tmax, p1.x());
if (dmaxIntersection) {
intersectionsFoundMax = true;
//kDebug(30006) << "found intersection with dmax at " << p1.x() << "," << dmax;
} else {
intersectionsFoundMin = true;
//kDebug(30006) << "found intersection with dmin at " << p1.x() << "," << dmin;
}
}
} else if (p1.y() == p2.y()) {
// horizontal line
if (p1.y() == dmin || p1.y() == dmax) {
if (p1.y() == dmin) {
intersectionsFoundMin = true;
//kDebug(30006) << "found intersection with dmin at " << p1.x() << "," << dmin;
//kDebug(30006) << "found intersection with dmin at " << p2.x() << "," << dmin;
} else {
intersectionsFoundMax = true;
//kDebug(30006) << "found intersection with dmax at " << p1.x() << "," << dmax;
//kDebug(30006) << "found intersection with dmax at " << p2.x() << "," << dmax;
}
tmin = qMin(tmin, p1.x());
tmin = qMin(tmin, p2.x());
tmax = qMax(tmax, p1.x());
tmax = qMax(tmax, p2.x());
}
} else {
qreal dx = p2.x() - p1.x();
qreal dy = p2.y() - p1.y();
qreal m = dy / dx;
qreal n = p1.y() - m * p1.x();
qreal t1 = (dmax - n) / m;
if (t1 >= 0.0 && t1 <= 1.0) {
tmin = qMin(tmin, t1);
tmax = qMax(tmax, t1);
intersectionsFoundMax = true;
//kDebug(30006) << "found intersection with dmax at " << t1 << "," << dmax;
}
qreal t2 = (dmin - n) / m;
if (t2 >= 0.0 && t2 < 1.0) {
tmin = qMin(tmin, t2);
tmax = qMax(tmax, t2);
intersectionsFoundMin = true;
//kDebug(30006) << "found intersection with dmin at " << t2 << "," << dmin;
}
}
}
bool intersectionsFound = intersectionsFoundMin && intersectionsFoundMax;
//if (intersectionsFound)
// kDebug(30006) << "clipping segment to interval [" << tmin << "," << tmax << "]";
if (!intersectionsFound || (1.0 - (tmax - tmin)) <= 0.2) {
//kDebug(30006) << "could not clip enough -> split segment";
// we could not reduce the interval significantly
// so split the curve and calculate intersections
// with the remaining parts
QPair<KoPathSegment, KoPathSegment> parts = splitAt(0.5);
if (d->chordLength() < 1e-5)
isects += parts.first.second()->point();
else {
isects += segment.intersections(parts.first);
isects += segment.intersections(parts.second);
}
} else if (qAbs(tmin - tmax) < 1e-5) {
//kDebug(30006) << "Yay, we found an intersection";
// the inteval is pretty small now, just calculate the intersection at this point
isects.append(segment.pointAt(tmin));
} else {
QPair<KoPathSegment, KoPathSegment> clip1 = segment.splitAt(tmin);
//kDebug(30006) << "splitting segment at" << tmin;
qreal t = (tmax - tmin) / (1.0 - tmin);
QPair<KoPathSegment, KoPathSegment> clip2 = clip1.second.splitAt(t);
//kDebug(30006) << "splitting second part at" << t << "("<<tmax<<")";
isects += clip2.first.intersections(*this);
}
return isects;
}
KoPathSegment KoPathSegment::mapped(const QTransform &matrix) const
{
if (!isValid())
return *this;
KoPathPoint * p1 = new KoPathPoint(*d->first);
KoPathPoint * p2 = new KoPathPoint(*d->second);
p1->map(matrix);
p2->map(matrix);
return KoPathSegment(p1, p2);
}
KoPathSegment KoPathSegment::toCubic() const
{
if (! isValid())
return KoPathSegment();
KoPathPoint * p1 = new KoPathPoint(*d->first);
KoPathPoint * p2 = new KoPathPoint(*d->second);
if (degree() == 1) {
p1->setControlPoint2(p1->point() + 0.3 * (p2->point() - p1->point()));
p2->setControlPoint1(p2->point() + 0.3 * (p1->point() - p2->point()));
} else if (degree() == 2) {
/* quadric bezier (a0,a1,a2) to cubic bezier (b0,b1,b2,b3):
*
* b0 = a0
* b1 = a0 + 2/3 * (a1-a0)
* b2 = a1 + 1/3 * (a2-a1)
* b3 = a2
*/
QPointF a1 = p1->activeControlPoint2() ? p1->controlPoint2() : p2->controlPoint1();
QPointF b1 = p1->point() + 2.0 / 3.0 * (a1 - p1->point());
QPointF b2 = a1 + 1.0 / 3.0 * (p2->point() - a1);
p1->setControlPoint2(b1);
p2->setControlPoint1(b2);
}
return KoPathSegment(p1, p2);
}
qreal KoPathSegment::length(qreal error) const
{
/*
* This algorithm is implemented based on an idea by Jens Gravesen:
* "Adaptive subdivision and the length of Bezier curves" mat-report no. 1992-10, Mathematical Institute,
* The Technical University of Denmark.
*
* By subdividing the curve at parameter value t you only have to find the length of a full Bezier curve.
* If you denote the length of the control polygon by L1 i.e.:
* L1 = |P0 P1| +|P1 P2| +|P2 P3|
*
* and the length of the cord by L0 i.e.:
* L0 = |P0 P3|
*
* then
* L = 1/2*L0 + 1/2*L1
*
* is a good approximation to the length of the curve, and the difference
* ERR = L1-L0
*
* is a measure of the error. If the error is to large, then you just subdivide curve at parameter value
* 1/2, and find the length of each half.
* If m is the number of subdivisions then the error goes to zero as 2^-4m.
* If you don't have a cubic curve but a curve of degree n then you put
* L = (2*L0 + (n-1)*L1)/(n+1)
*/
int deg = degree();
if (deg == -1)
return 0.0;
QList<QPointF> ctrlPoints = controlPoints();
// calculate chord length
qreal chordLen = d->chordLength();
if (deg == 1) {
return chordLen;
}
// calculate length of control polygon
qreal polyLength = 0.0;
for (int i = 0; i < deg; ++i) {
QPointF ctrlSegment = ctrlPoints[i+1] - ctrlPoints[i];
polyLength += sqrt(ctrlSegment.x() * ctrlSegment.x() + ctrlSegment.y() * ctrlSegment.y());
}
if ((polyLength - chordLen) > error) {
// the error is still bigger than our tolerance -> split segment
QPair<KoPathSegment, KoPathSegment> parts = splitAt(0.5);
return parts.first.length(error) + parts.second.length(error);
} else {
// the error is smaller than our tolerance
if (deg == 3)
return 0.5 * chordLen + 0.5 * polyLength;
else
return (2.0 * chordLen + polyLength) / 3.0;
}
}
qreal KoPathSegment::lengthAt(qreal t, qreal error) const
{
if (t == 0.0)
return 0.0;
if (t == 1.0)
return length(error);
QPair<KoPathSegment, KoPathSegment> parts = splitAt(t);
return parts.first.length(error);
}
qreal KoPathSegment::paramAtLength(qreal length, qreal tolerance) const
{
const int deg = degree();
// invalid degree or invalid specified length
if (deg < 1 || length <= 0.0) {
return 0.0;
}
if (deg == 1) {
// make sure we return a maximum value of 1.0
return qMin(qreal(1.0), length / d->chordLength());
}
// for curves we need to make sure, that the specified length
// value does not exceed the actual length of the segment
// if that happens, we return 1.0 to avoid infinite looping
if (length >= d->chordLength() && length >= this->length(tolerance)) {
return 1.0;
}
qreal startT = 0.0; // interval start
qreal midT = 0.5; // interval center
qreal endT = 1.0; // interval end
// divide and conquer, split a midpoint and check
// on which side of the midpoint to continue
qreal midLength = lengthAt(0.5);
while (qAbs(midLength - length) / length > tolerance) {
if (midLength < length)
startT = midT;
else
endT = midT;
// new interval center
midT = 0.5 * (startT + endT);
// length at new interval center
midLength = lengthAt(midT);
}
return midT;
}
bool KoPathSegment::isFlat(qreal tolerance) const
{
/*
* Calculate the height of the bezier curve.
* This is done by rotating the curve so that then chord
* is parallel to the x-axis and the calculating the
* parameters t for the extrema of the curve.
* The curve points at the extrema are then used to
* calculate the height.
*/
if (degree() <= 1)
return true;
QPointF chord = d->second->point() - d->first->point();
// calculate angle of chord to the x-axis
qreal chordAngle = atan2(chord.y(), chord.x());
QTransform m;
m.translate(d->first->point().x(), d->first->point().y());
m.rotate(chordAngle * M_PI / 180.0);
m.translate(-d->first->point().x(), -d->first->point().y());
KoPathSegment s = mapped(m);
qreal minDist = 0.0;
qreal maxDist = 0.0;
foreach (qreal t, s.d->extrema()) {
if (t >= 0.0 && t <= 1.0) {
QPointF p = pointAt(t);
qreal dist = s.d->distanceFromChord(p);
minDist = qMin(dist, minDist);
maxDist = qMax(dist, maxDist);
}
}
return (maxDist - minDist <= tolerance);
}
QList<QPointF> KoPathSegment::convexHull() const
{
QList<QPointF> hull;
int deg = degree();
if (deg == 1) {
// easy just the two end points
hull.append(d->first->point());
hull.append(d->second->point());
} else if (deg == 2) {
// we want to have a counter-clockwise oriented triangle
// of the three control points
QPointF chord = d->second->point() - d->first->point();
QPointF cp = d->first->activeControlPoint2() ? d->first->controlPoint2() : d->second->controlPoint1();
QPointF relP = cp - d->first->point();
// check on which side of the chord the control point is
bool pIsRight = (chord.x() * relP.y() - chord.y() * relP.x() > 0);
hull.append(d->first->point());
if (pIsRight)
hull.append(cp);
hull.append(d->second->point());
if (! pIsRight)
hull.append(cp);
} else if (deg == 3) {
// we want a counter-clockwise oriented polygon
QPointF chord = d->second->point() - d->first->point();
QPointF relP1 = d->first->controlPoint2() - d->first->point();
// check on which side of the chord the control points are
bool p1IsRight = (chord.x() * relP1.y() - chord.y() * relP1.x() > 0);
hull.append(d->first->point());
if (p1IsRight)
hull.append(d->first->controlPoint2());
hull.append(d->second->point());
if (! p1IsRight)
hull.append(d->first->controlPoint2());
// now we have a counter-clockwise triangle with the points i,j,k
// we have to check where the last control points lies
bool rightOfEdge[3];
QPointF lastPoint = d->second->controlPoint1();
for (int i = 0; i < 3; ++i) {
QPointF relP = lastPoint - hull[i];
QPointF edge = hull[(i+1)%3] - hull[i];
rightOfEdge[i] = (edge.x() * relP.y() - edge.y() * relP.x() > 0);
}
for (int i = 0; i < 3; ++i) {
int prev = (3 + i - 1) % 3;
int next = (i + 1) % 3;
// check if point is only right of the n-th edge
if (! rightOfEdge[prev] && rightOfEdge[i] && ! rightOfEdge[next]) {
// insert by breaking the n-th edge
hull.insert(i + 1, lastPoint);
break;
}
// check if it is right of the n-th and right of the (n+1)-th edge
if (rightOfEdge[i] && rightOfEdge[next]) {
// remove both edge, insert two new edges
hull[i+1] = lastPoint;
break;
}
// check if it is right of n-th and right of (n-1)-th edge
if (rightOfEdge[i] && rightOfEdge[prev]) {
hull[i] = lastPoint;
break;
}
}
}
return hull;
}
QPair<KoPathSegment, KoPathSegment> KoPathSegment::splitAt(qreal t) const
{
QPair<KoPathSegment, KoPathSegment> results;
if (!isValid())
return results;
if (degree() == 1) {
QPointF p = d->first->point() + t * (d->second->point() - d->first->point());
results.first = KoPathSegment(d->first->point(), p);
results.second = KoPathSegment(p, d->second->point());
} else {
QPointF newCP2, newCP1, splitP, splitCP1, splitCP2;
d->deCasteljau(t, &newCP2, &splitCP1, &splitP, &splitCP2, &newCP1);
if (degree() == 2) {
if (second()->activeControlPoint1()) {
KoPathPoint *s1p1 = new KoPathPoint(0, d->first->point());
KoPathPoint *s1p2 = new KoPathPoint(0, splitP);
s1p2->setControlPoint1(splitCP1);
KoPathPoint *s2p1 = new KoPathPoint(0, splitP);
KoPathPoint *s2p2 = new KoPathPoint(0, d->second->point());
s2p2->setControlPoint1(splitCP2);
results.first = KoPathSegment(s1p1, s1p2);
results.second = KoPathSegment(s2p1, s2p2);
} else {
results.first = KoPathSegment(d->first->point(), splitCP1, splitP);
results.second = KoPathSegment(splitP, splitCP2, d->second->point());
}
} else {
results.first = KoPathSegment(d->first->point(), newCP2, splitCP1, splitP);
results.second = KoPathSegment(splitP, splitCP2, newCP1, d->second->point());
}
}
return results;
}
QList<QPointF> KoPathSegment::controlPoints() const
{
QList<QPointF> controlPoints;
controlPoints.append(d->first->point());
if (d->first->activeControlPoint2())
controlPoints.append(d->first->controlPoint2());
if (d->second->activeControlPoint1())
controlPoints.append(d->second->controlPoint1());
controlPoints.append(d->second->point());
return controlPoints;
}
qreal KoPathSegment::nearestPoint(const QPointF &point) const
{
if (!isValid())
return -1.0;
const int deg = degree();
// use shortcut for line segments
if (deg == 1) {
// the segments chord
QPointF chord = d->second->point() - d->first->point();
// the point relative to the segment
QPointF relPoint = point - d->first->point();
// project point to chord (dot product)
qreal scale = chord.x() * relPoint.x() + chord.y() * relPoint.y();
// normalize using the chord length
scale /= chord.x() * chord.x() + chord.y() * chord.y();
if (scale < 0.0) {
return 0.0;
} else if (scale > 1.0) {
return 1.0;
} else {
return scale;
}
}
/* This function solves the "nearest point on curve" problem. That means, it
* calculates the point q (to be precise: it's parameter t) on this segment, which
* is located nearest to the input point P.
* The basic idea is best described (because it is freely available) in "Phoenix:
* An Interactive Curve Design System Based on the Automatic Fitting of
* Hand-Sketched Curves", Philip J. Schneider (Master thesis, University of
* Washington).
*
* For the nearest point q = C(t) on this segment, the first derivative is
* orthogonal to the distance vector "C(t) - P". In other words we are looking for
* solutions of f(t) = (C(t) - P) * C'(t) = 0.
* (C(t) - P) is a nth degree curve, C'(t) a n-1th degree curve => f(t) is a
* (2n - 1)th degree curve and thus has up to 2n - 1 distinct solutions.
* We solve the problem f(t) = 0 by using something called "Approximate Inversion Method".
* Let's write f(t) explicitly (with c_i = p_i - P and d_j = p_{j+1} - p_j):
*
* n n-1
* f(t) = SUM c_i * B^n_i(t) * SUM d_j * B^{n-1}_j(t)
* i=0 j=0
*
* n n-1
* = SUM SUM w_{ij} * B^{2n-1}_{i+j}(t)
* i=0 j=0
*
* with w_{ij} = c_i * d_j * z_{ij} and
*
* BinomialCoeff(n, i) * BinomialCoeff(n - i ,j)
* z_{ij} = -----------------------------------------------
* BinomialCoeff(2n - 1, i + j)
*
* This Bernstein-Bezier polynom representation can now be solved for it's roots.
*/
QList<QPointF> ctlPoints = controlPoints();
// Calculate the c_i = point(i) - P.
QPointF * c_i = new QPointF[ deg + 1 ];
for (int i = 0; i <= deg; ++i) {
c_i[ i ] = ctlPoints[ i ] - point;
}
// Calculate the d_j = point(j + 1) - point(j).
QPointF *d_j = new QPointF[deg];
for (int j = 0; j <= deg - 1; ++j) {
d_j[j] = 3.0 * (ctlPoints[j+1] - ctlPoints[j]);
}
// Calculate the dot products of c_i and d_i.
qreal *products = new qreal[deg * (deg + 1)];
for (int j = 0; j <= deg - 1; ++j) {
for (int i = 0; i <= deg; ++i) {
products[j * (deg + 1) + i] = d_j[j].x() * c_i[i].x() + d_j[j].y() * c_i[i].y();
}
}
// We don't need the c_i and d_i anymore.
delete[] d_j ;
delete[] c_i ;
// Calculate the control points of the new 2n-1th degree curve.
BezierSegment newCurve;
newCurve.setDegree(2 * deg - 1);
// Set up control points in the (u, f(u))-plane.
for (unsigned short u = 0; u <= 2 * deg - 1; ++u) {
newCurve.setPoint(u, QPointF(static_cast<qreal>(u) / static_cast<qreal>(2 * deg - 1), 0.0));
}
// Precomputed "z" for cubics
static qreal z3[3*4] = {1.0, 0.6, 0.3, 0.1, 0.4, 0.6, 0.6, 0.4, 0.1, 0.3, 0.6, 1.0};
// Precomputed "z" for quadrics
static qreal z2[2*3] = {1.0, 2./3., 1./3., 1./3., 2./3., 1.0};
qreal *z = degree() == 3 ? z3 : z2;
// Set f(u)-values.
for (int k = 0; k <= 2 * deg - 1; ++k) {
int min = qMin(k, deg);
for (unsigned short i = qMax(0, k - (deg - 1)); i <= min; ++i) {
unsigned short j = k - i;
// p_k += products[j][i] * z[j][i].
QPointF currentPoint = newCurve.point(k);
currentPoint.ry() += products[j * (deg + 1) + i] * z[j * (deg + 1) + i];
newCurve.setPoint(k, currentPoint);
}
}
// We don't need the c_i/d_i dot products and the z_{ij} anymore.
delete[] products;
// Find roots.
QList<qreal> rootParams = newCurve.roots();
// Now compare the distances of the candidate points.
// First candidate is the previous knot.
QPointF dist = d->first->point() - point;
qreal distanceSquared = dist.x() * dist.x() + dist.y() * dist.y();
qreal oldDistanceSquared;
qreal resultParam = 0.0;
// Iterate over the found candidate params.
foreach (qreal root, rootParams) {
dist = point - pointAt(root);
oldDistanceSquared = distanceSquared;
distanceSquared = dist.x() * dist.x() + dist.y() * dist.y();
if (distanceSquared < oldDistanceSquared)
resultParam = root;
}
// Last candidate is the knot.
dist = d->second->point() - point;
oldDistanceSquared = distanceSquared;
distanceSquared = dist.x() * dist.x() + dist.y() * dist.y();
if (distanceSquared < oldDistanceSquared)
resultParam = 1.0;
return resultParam;
}
KoPathSegment KoPathSegment::interpolate(const QPointF &p0, const QPointF &p1, const QPointF &p2, qreal t)
{
if (t <= 0.0 || t >= 1.0)
return KoPathSegment();
/*
B(t) = [x2 y2] = (1-t)^2*P0 + 2t*(1-t)*P1 + t^2*P2
B(t) - (1-t)^2*P0 - t^2*P2
P1 = --------------------------
2t*(1-t)
*/
QPointF c1 = p1 - (1.0-t) * (1.0-t)*p0 - t * t * p2;
qreal denom = 2.0 * t * (1.0-t);
c1.rx() /= denom;
c1.ry() /= denom;
return KoPathSegment(p0, c1, p2);
}
#if 0
void KoPathSegment::printDebug() const
{
int deg = degree();
kDebug(30006) << "degree:" << deg;
if (deg < 1)
return;
kDebug(30006) << "P0:" << d->first->point();
if (deg == 1) {
kDebug(30006) << "P2:" << d->second->point();
} else if (deg == 2) {
if (d->first->activeControlPoint2())
kDebug(30006) << "P1:" << d->first->controlPoint2();
else
kDebug(30006) << "P1:" << d->second->controlPoint1();
kDebug(30006) << "P2:" << d->second->point();
} else if (deg == 3) {
kDebug(30006) << "P1:" << d->first->controlPoint2();
kDebug(30006) << "P2:" << d->second->controlPoint1();
kDebug(30006) << "P3:" << d->second->point();
}
}
#endif
|