File: PhysicalModel.cpp

package info (click to toggle)
camitk 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 343,588 kB
  • sloc: cpp: 78,476; xml: 1,210; sh: 723; ansic: 142; makefile: 101; perl: 84; sed: 20
file content (963 lines) | stat: -rw-r--r-- 34,138 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
/*****************************************************************************
 * $CAMITK_LICENCE_BEGIN$
 *
 * CamiTK - Computer Assisted Medical Intervention ToolKit
 * (c) 2001-2016 Univ. Grenoble Alpes, CNRS, TIMC-IMAG UMR 5525 (GMCAO)
 *
 * Visit http://camitk.imag.fr for more information
 *
 * This file is part of CamiTK.
 *
 * CamiTK is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License version 3
 * only, as published by the Free Software Foundation.
 *
 * CamiTK is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License version 3 for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * version 3 along with CamiTK.  If not, see <http://www.gnu.org/licenses/>.
 *
 * $CAMITK_LICENCE_END$
 ****************************************************************************/

#include <stdexcept>
#include <iostream>
#include <fstream>
#include <iomanip>


// Other includes
#include "PhysicalModel.h"
//#include "Object3D.h"
#include "Atom.h"
#include "Cell.h"
#include "CellProperties.h"
#include "MultiComponent.h"
#include "StructuralComponent.h"

#include "PhysicalModelVersion.h"

// pmlschema stuffs
#include <PhysicalModel.hxx>
#include <StructuralComponent.hxx>
#include <InformativeComponent.hxx>
#include <Atoms.hxx>
#include <MultiComponent.hxx>

// XercesC stuffs
#include <xercesc/util/PlatformUtils.hpp>

//--------------- Constructor/Destructor ------------------------------
PhysicalModel::PhysicalModel() {
    init();
}

PhysicalModel::PhysicalModel ( const char * fileName, PtrToSetProgressFunction pspf ) throw ( PMLAbortException ) {
    init();
    setProgressFunction = pspf;

    // load from the xml file
    xmlRead ( fileName );
}

// --------------- destructor ---------------
PhysicalModel::~PhysicalModel() {
    clear();
}

// --------------- init ---------------
void PhysicalModel::init() {
    properties = new Properties ( this );
    positionPtr = NULL;
    exclusiveComponents = NULL;
    informativeComponents = NULL;
    atoms = NULL;
    setProgressFunction = NULL;
    cellIndexOptimized = true; //always hopeful!
    isModifiedFlag = false;
}

// --------------- setProgress ---------------
void PhysicalModel::setProgress ( const float donePercentage ) {
    if ( setProgressFunction != NULL ) {
        setProgressFunction ( donePercentage );
    }
}

// --------------- clear ---------------
void PhysicalModel::clear() {
    if ( informativeComponents ) {
        delete informativeComponents;
    }

    informativeComponents = NULL;

    if ( exclusiveComponents ) {
        delete exclusiveComponents;
    }

    exclusiveComponents = NULL;

    // delete all atoms at the end (otherwise deletion of cells in informative
    // or exclusive components will try to tell already deleted (unaccessible) atoms
    // that some of their SC is to be removed from their list
    if ( atoms ) {
        delete atoms;
    }

    atoms = NULL;

    // clean position memory
    delete [] positionPtr;

    // reset all the unique indexes
    AtomProperties::resetUniqueIndex();

    CellProperties::resetUniqueIndex();

    atomMap.clear();

    cellMap.clear();

    delete properties;
    properties = NULL;
}

// --------------- getNumberOfCells   ---------------
unsigned int PhysicalModel::getNumberOfCells() const {
    unsigned int nrOfCells = 0;

    if ( exclusiveComponents ) {
        nrOfCells += exclusiveComponents->getNumberOfCells();
    }

    if ( informativeComponents ) {
        nrOfCells += informativeComponents->getNumberOfCells();
    }

    return nrOfCells;
}

// --------------- getPositionPointer ---------------
double * PhysicalModel::getPositionPointer() const {
    return positionPtr;
}

double * PhysicalModel::getPositionPointer ( const Atom *a ) const {
    unsigned int idInAtom = a->getIndexInAtoms();

    if ( idInAtom>=0 )
        // * 3 because the position are stored consequently, using a double for x, y and z (3 double then!)
    {
        return positionPtr + idInAtom*3;
    } else {
        // look for atom  #index in the atoms
        Atom *ai = NULL;
        unsigned int i = 0;

        while ( i<atoms->getNumberOfStructures() && ( ai != a ) )  {
            ai = dynamic_cast<Atom *> ( atoms->getStructure ( i ) );
            i++;
        }

        if ( ai == a )
            // the memory allocated to atom #index is (i-1) * 3 (because the position are stored consequently, using a double for x, y and z
        {
            return positionPtr + ( i-1 ) *3;
        } else {
            return NULL;
        }
    }
}

double * PhysicalModel::getPositionPointer ( const unsigned int index ) const {
    // look for atom  #index in the atoms
    bool found = false;
    unsigned int i = 0;

    while ( i<atoms->getNumberOfStructures() && !found ) {
        Atom *a = dynamic_cast<Atom *> ( atoms->getStructure ( i ) );
        found = ( a->getIndex() == index );
        i++;
    }

    if ( found )
        // the memory allocated to atom #index is (i-1) * 3 (because the position are stored consequently, using a double for x, y and z
    {
        return positionPtr + ( i-1 ) *3;
    } else {
        return NULL;
    }
}

// --------------- optimizeIndexes ---------------
void PhysicalModel::optimizeIndexes ( MultiComponent * mc, unsigned int * index ) {
    Component *c;
    StructuralComponent *sc;
    Cell *cell;

    for ( unsigned int i = 0; i < mc->getNumberOfSubComponents(); i++ ) {
        c = mc->getSubComponent ( i );

        if ( c->isInstanceOf ( "MultiComponent" ) ) {
            optimizeIndexes ( ( MultiComponent * ) c, index );
        } else {
            if ( c->isInstanceOf ( "StructuralComponent" ) ) {
                sc = ( StructuralComponent * ) c;
                // check all cells

                for ( unsigned int j = 0; j < sc->getNumberOfStructures(); j++ ) {
                    if ( sc->getStructure ( j )->isInstanceOf ( "Cell" ) ) {
                        cell = ( Cell * ) sc->getStructure ( j );
                        // if this is the sc that make the cell print its data, change cell index

                        if ( cell->makePrintData ( sc ) ) {
                            cell->setIndex ( *index );
                            *index = ( *index ) + 1;
                        }
                    }
                }
            }
        }
    }
}

void PhysicalModel::optimizeIndexes() {
    // to optimize the indexes: do as if it was a print/read operation (same order
    // and change the cell index (as everyone is linked with ptrs, that should not
    // change anything else

    // first: the atoms
    if ( atoms ) {
        for ( unsigned int i = 0; i < atoms->getNumberOfStructures(); i++ ) {
            ( ( Atom * ) atoms->getStructure ( i ) )->setIndex ( i );
        }
    }

    // then the cells
    unsigned int newIndex =  0;

    if ( exclusiveComponents ) {
        optimizeIndexes ( exclusiveComponents, &newIndex );
    }

    if ( informativeComponents ) {
        optimizeIndexes ( informativeComponents, &newIndex );
    }

}

// --------------- xmlPrint   ---------------
void PhysicalModel::xmlPrint ( std::ostream &o, bool opt ) {

    // should we optimize the cell indexes ?
    if ( !cellIndexOptimized && opt ) {
        optimizeIndexes();
    }

    // print out the whole thing
    o << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" << std::endl;

    o << "<!-- physical model (PML) is a generic representation for 3D physical model." << std::endl
      << "     PML supports not continous indexes and multiple non-exclusive labelling." << std::endl
      << "  --> " << std::endl;

    o << "<physicalModel";

    if ( getName() != "" ) {
        o << " name=\"" << getName().c_str() << "\"";
    }

    if ( atoms ) {
        o << " nrOfAtoms=\"" << atoms->getNumberOfStructures() << "\"" << std::endl;
    }

    if ( exclusiveComponents ) {
        o << " nrOfExclusiveComponents=\"" << exclusiveComponents->getNumberOfSubComponents() << "\"" << std::endl;
    }

    if ( informativeComponents ) {
        o << " nrOfInformativeComponents=\"" << informativeComponents->getNumberOfSubComponents() << "\"" << std::endl;
    }

    o << " nrOfCells=\"" << getNumberOfCells() << "\"" << std::endl;

    for ( unsigned int i = 0; i<properties->numberOfFields(); i++ ) {
        o << " " <<  properties->getField ( i ) <<"=\"" << properties->getString ( properties->getField ( i ) ) << "\"" << std::endl;
    }

    o << ">" << std::endl;

    o << "<!-- list of atoms: -->" << std::endl;

    o << "<atoms>" << std::endl;

    if ( atoms ) {
        atoms->xmlPrint ( o );
    }

    o << "</atoms>" << std::endl;

    o << "<!-- list of exclusive components : -->" << std::endl;

    o << "<exclusiveComponents>" << std::endl;

    if ( exclusiveComponents ) {
        exclusiveComponents->xmlPrint ( o );
    }

    o << "</exclusiveComponents>" << std::endl;

    if ( informativeComponents ) {
        o << "<!-- list of informative components : -->" << std::endl;
        o << "<informativeComponents>" << std::endl;
        informativeComponents->xmlPrint ( o );
        o << "</informativeComponents>" << std::endl;
    }

    o << "</physicalModel>" << std::endl;

    // serialized/marshalled -> saved
    isModifiedFlag = false;
}

// --------------- xmlRead   ---------------
void PhysicalModel::xmlRead ( const char * filename ) throw ( PMLAbortException ) {
    // clear all the current data
    clear();

    // Set the locale to C for using dot as decimal point dispite locale
    // Set utf8 for output to enforce using utf8 strings.
    char * statusOk = setlocale ( LC_CTYPE, "C.UTF-8" );
    if ( statusOk!=NULL ) {
        statusOk = setlocale ( LC_NUMERIC, "C.UTF-8" );
    }
    if ( statusOk!=NULL ) {
        statusOk = setlocale ( LC_TIME, "C.UTF-8" );
    }

    // french is: "fr_FR.UTF8"
    if ( !statusOk ) {
        // try without UTF-8
        statusOk = setlocale ( LC_CTYPE,"C" );
        if ( statusOk!=NULL ) {
            statusOk = setlocale ( LC_NUMERIC, "C" );
        }
        if ( statusOk!=NULL ) {
            statusOk = setlocale ( LC_TIME, "C" );
        }
        if ( statusOk==NULL ) {
            std::cerr << "Could not set the locale to C. This is mandatory to enforce using dot as decimal separator (platform independency)." << std::endl;
            std::cerr << "This can cause a lot of trouble for XML I/O... Beware of decimal dots..." << std::endl;
        }
    }

    // Initialize manually the XercesC++ runtime, required by using wildcards in XSD schema.
    // Implies that we pass the xml_shema::flags::dont_initialize to any serialization method of the pmlschema library
    // as we already have initialized the XercesC runtime manually.
    xercesc::XMLPlatformUtils::Initialize ();

    // Use XSD with the pmlschema library to read the loads described in the xml file.
    try {
        std::auto_ptr<physicalModel::PhysicalModel> root = physicalModel::physicalModel ( filename, xml_schema::flags::dont_initialize | xml_schema::flags::dont_validate );

        // get the basename
        std::string basename = filename;
        // remove the path
        unsigned lastSeparator = basename.find_last_of ( "/\\" ); // works for unix and windows
        if ( lastSeparator != std::string::npos ) {
            basename = basename.substr ( lastSeparator+1 );
        }
        // remove the extension
        lastSeparator = basename.find_last_of ( "." );
        if ( lastSeparator != std::string::npos ) {
            basename.erase ( lastSeparator );
        }

        // Parse the xml content
        this->parseTree ( root, basename );
    } catch ( const xml_schema::exception& e ) {
        std::ostringstream os;
        os << "Library-pml Error: In PhysicalModel::xmlRead(..): Failed to read the xml file, reason:" << std::endl;
        os << e << std::endl;
        std::cerr << os.str() << std::endl;
        throw PMLAbortException ( os.str () );
    }

    // Terminate the XercesC++ runtime manually
    xercesc::XMLPlatformUtils::Terminate ();
}


// ------------------ parse tree ------------------
bool PhysicalModel::parseTree ( std::auto_ptr<physicalModel::PhysicalModel> root , std::string defaultName ) {

    // Pml file have a name which can be an empty string
    std::string name;
    if ( root->name().present() ) {
        name = root->name().get();
    } else {
        name = defaultName;
    }

    this->properties = new Properties ( this, name );

    // add additionnal attributes as properties
    physicalModel::PhysicalModel::any_attribute_set unknownAttrs = root->any_attribute();
    this->properties->xmlToFields ( unknownAttrs );

    // Parse the atoms
    parseAtoms ( root->atoms() );

    // allocate the big memory bunch
    positionPtr = new double[3*atoms->getNumberOfStructures()];
    // assign all position memory
    double * currentPositionPtr = positionPtr;

    for ( unsigned int i=0; i<atoms->getNumberOfStructures(); i++ ) {
        Atom *a = dynamic_cast<Atom *> ( atoms->getStructure ( i ) );
        a->getProperties()->setPositionPointer ( currentPositionPtr );
        // next position => jump 3 double memory space
        currentPositionPtr = currentPositionPtr + 3;
    }

    // Parse the exclusive components
    physicalModel::ExclusiveComponent ecs = root->exclusiveComponents();
    physicalModel::MultiComponent xmlExclusiveMC = ecs.multiComponent();
    // Get the top level multicomponent node (with name + unkown attributes)
    MultiComponent* exclusiveMC = new MultiComponent ( this );
    // recursively build the tree of exclusive components
    parseComponents ( xmlExclusiveMC, exclusiveMC, true );
    // Add it to the structure
    this->setExclusiveComponents ( exclusiveMC );

    // Parse the informative components
    if ( root->informativeComponents().present() ) {
        physicalModel::InformativeComponent ics = root->informativeComponents().get();
        physicalModel::MultiComponent xmlInformativeMC = ics.multiComponent();
        // Get the top level multicomponent node (with name + unkown attributes)
        MultiComponent* informativeMC = new MultiComponent ( this );
        // recursively build the tree of informative components
        parseComponents ( xmlInformativeMC, informativeMC, false );

        // Add it to the structure
        this->setInformativeComponents ( informativeMC );
    }

    return true;
}


// ------------------ parse atoms ------------------
bool PhysicalModel::parseAtoms ( physicalModel::PhysicalModel::atoms_type atomsRoot ) {

    // Parse the content of the structuralComponent
    physicalModel::Atoms:: structuralComponent_type xmlSC = atomsRoot.structuralComponent();
    StructuralComponent* sc = new StructuralComponent ( this, xmlSC );

    // Parse the number of structures
    if ( xmlSC.nrOfStructures().present() ) {
        sc->plannedNumberOfStructures ( xmlSC.nrOfStructures().get().value() );
    }

    // Parse the atoms
    unsigned int atomOrderNumber = 0; // index in the atoms SC
    physicalModel::StructuralComponent::atom_sequence &atoms = xmlSC.atom();
    for ( physicalModel::StructuralComponent::atom_iterator atomIt ( atoms.begin() ); atomIt != atoms.end(); atomIt++ ) {
        physicalModel::Atom& currentAtom = *atomIt;
        Atom *newAtom = new Atom ( this, currentAtom, atomOrderNumber );
        atomOrderNumber++;
        sc->addStructure ( newAtom );

    }
    // Identify the parsed structural component as the list of atoms
    this->setAtoms ( sc );

    return true;
}


// ------------------ parse Components ------------------
bool PhysicalModel::parseComponents ( physicalModel::MultiComponent xmlFatherMC, Component* father, bool isExclusive ) {

    // Parse the name and unkown properties attribute of the main multiComponent
    MultiComponent* fatherMC = ( MultiComponent* ) father;
    fatherMC->setName ( xmlFatherMC.name().get() );
    fatherMC->getProperties()->xmlToFields ( xmlFatherMC.any_attribute() );

    // Recursively consider multi component children
    physicalModel::MultiComponent::multiComponent_sequence xmlChildren = xmlFatherMC.multiComponent();
    for ( physicalModel::MultiComponent::multiComponent_iterator MCIt = xmlChildren.begin(); MCIt != xmlChildren.end(); MCIt++ ) {
        physicalModel::MultiComponent xml_child = ( *MCIt );
        MultiComponent* child = new MultiComponent ( this );
        fatherMC->addSubComponent ( child );
        this->parseComponents ( xml_child, child, isExclusive );
    }

    // Consider the structural component children
    physicalModel::MultiComponent::structuralComponent_sequence xmlAllSC = xmlFatherMC.structuralComponent();
    for ( physicalModel::MultiComponent::structuralComponent_iterator SCIt = xmlAllSC.begin(); SCIt != xmlAllSC.end(); SCIt++ ) {
        physicalModel::StructuralComponent xmlSC = ( *SCIt );
        StructuralComponent* sc = new StructuralComponent ( this, xmlSC );
        sc->setExclusive ( isExclusive );
        fatherMC->addSubComponent ( sc );

        // StructuralComponent's cells
        physicalModel::StructuralComponent::cell_sequence xmlAllCells = xmlSC.cell();
        for ( physicalModel::StructuralComponent::cell_iterator  cellIt = xmlAllCells.begin();
                cellIt != xmlAllCells.end();
                cellIt++ ) {
            physicalModel::Cell xmlCell = * ( cellIt );
            // create the cell according to its geometric type
            Cell* cell = new Cell ( this, xmlCell, sc );
            cell->setExclusive ( isExclusive );
            if ( this->cellIndexOptimized ) {
                std::GlobalIndexStructurePair pair ( cell->getIndex(), cell );
                this->addGlobalIndexCellPair ( pair );
            }
            sc->addStructure ( cell, false );
        }

        // StructuralComponent's atoms references
        physicalModel::StructuralComponent::atomRef_sequence xmlAllAtomRefs = xmlSC.atomRef();
        for ( physicalModel::StructuralComponent::atomRef_iterator   atomRefIt = xmlAllAtomRefs.begin();
                atomRefIt != xmlAllAtomRefs.end();
                atomRefIt++ ) {
            physicalModel::AtomRef atomRef = * ( atomRefIt );
            // Get the atom corresponding to the reference
            Atom* a = this->getAtom ( atomRef.index() );
            if ( a ) {
                sc->addStructure ( a );
            } else {
                std::cerr << "PhysicalModel::parseComponents: cannot find atom of ref: " << atomRef.index() << std::endl;
            }
        }
    }

    return true;
}



// ------------------ getComponentByName ------------------
Component * PhysicalModel::getComponentByName ( const std::string n ) {
    //-- look for the component in exclusive component first
    Component * foundC;
    foundC = exclusiveComponents->getComponentByName ( n );

    //-- then look in the informative components
    if ( !foundC && informativeComponents ) {
        foundC = informativeComponents->getComponentByName ( n );
    }
    
    //-- at last, just in case, look if this is not the name of the atoms SC
    if ( !foundC && getAtoms()->getName() == n) {
        foundC = getAtoms();
    }
    
    return foundC;
}

// ----------------------- setAtoms ------------------
void PhysicalModel::setAtoms ( StructuralComponent *sc, bool deleteOld ) {
    Atom *a;

    if ( sc->composedBy() == StructuralComponent::ATOMS ) {
        if ( atoms && deleteOld ) {
            delete atoms;
        }

        atoms = sc;

        // register all the atoms in the map, and tell the atoms about its new status
        for ( unsigned int i = 0; i < sc->getNumberOfStructures(); i++ ) {
            a = ( Atom * ) sc->getStructure ( i );
            a->getProperties()->setPhysicalModel ( this );
            addGlobalIndexAtomPair ( std::GlobalIndexStructurePair ( a->getIndex(), a ) );
        }
    }
}

// ----------------------- addAtom ------------------
bool PhysicalModel::addAtom ( Atom *newA ) {
    // register the atom in the map if possible
    if ( atoms && addGlobalIndexAtomPair ( std::GlobalIndexStructurePair ( newA->getIndex(), newA ) ) ) {
        // add the atom in the atom structural component
        atoms->addStructure ( newA );
        return true;
    } else {
        return false;    // atom does not have a unique index
    }
}

// ----------------------- addGlobalIndexAtomPair ------------------
bool PhysicalModel::addGlobalIndexAtomPair ( std::GlobalIndexStructurePair p ) {
    std::GlobalIndexStructureMapIterator mapIt;
    // check if the atom's index is unique
    mapIt = atomMap.find ( p.first );

    // if the index was found, one can not add the atom

    if ( mapIt != atomMap.end() ) {
        return false;
    }

    // if the atom is present in the map then replace the pair <atomIndex, Atom*>
    mapIt = atomMap.begin();

    while ( mapIt != atomMap.end() && mapIt->second != p.second ) {
        mapIt++;
    }

    // if found then remove the pair
    if ( mapIt != atomMap.end() ) {
        atomMap.erase ( mapIt );
    }

    // insert or re-insert (and return true if insertion was ok)
    return atomMap.insert ( p ).second;
}

// ----------------------- addGlobalIndexCellPair ------------------
bool PhysicalModel::addGlobalIndexCellPair ( std::GlobalIndexStructurePair p ) {
    std::GlobalIndexStructureMapIterator mapIt;
    // check if the cell index is unique
    mapIt = cellMap.find ( p.first );

    // if the index was found, one can not add the cell

    if ( mapIt != cellMap.end() ) {
        return false;
    }

    // if the cell is present in the map then replace the pair <cellIndex, Cell*>
    mapIt = cellMap.begin();

    while ( mapIt != cellMap.end() && mapIt->second != p.second ) {
        mapIt++;
    }

    // if found then remove the pair
    if ( mapIt != cellMap.end() ) {
        cellMap.erase ( mapIt );
    }

    // insert or re-insert
    bool insertionOk = cellMap.insert ( p ).second;

    // is that optimized?
    cellIndexOptimized = cellIndexOptimized && ( ( Cell * ) p.second )->getIndex() == optimizedCellList.size();

    if ( cellIndexOptimized ) {
        optimizedCellList.push_back ( ( Cell * ) p.second );
    }

    // insert or re-insert (and return true if insertion was ok)
    return insertionOk;
}

// ----------------------- setAtomPosition ------------------
void PhysicalModel::setAtomPosition ( Atom *atom, const double pos[3] ) {
    atom->setPosition ( pos );
}

// ----------------------- setExclusiveComponents ------------------
void PhysicalModel::setExclusiveComponents ( MultiComponent *mc ) {
    if ( exclusiveComponents ) {
        delete exclusiveComponents;
    }

    exclusiveComponents = mc;
    mc->setPhysicalModel ( this );
}

// ----------------------- setInformativeComponents ------------------
void PhysicalModel::setInformativeComponents ( MultiComponent *mc ) {
    if ( informativeComponents ) {
        delete informativeComponents;
    }

    informativeComponents = mc;
    mc->setPhysicalModel ( this );
}

// ----------------------- getNumberOfExclusiveComponents ------------------
unsigned int PhysicalModel::getNumberOfExclusiveComponents() const {
    if ( !exclusiveComponents ) {
        return 0;
    } else {
        return exclusiveComponents->getNumberOfSubComponents();
    }
}

// ----------------------- getNumberOfInformativeComponents ------------------
unsigned int PhysicalModel::getNumberOfInformativeComponents() const {
    if ( !informativeComponents ) {
        return 0;
    } else {
        return informativeComponents->getNumberOfSubComponents();
    }
}

// ----------------------- getNumberOfAtoms ------------------
unsigned int PhysicalModel::getNumberOfAtoms() const {
    if ( !atoms ) {
        return 0;
    } else {
        return atoms->getNumberOfStructures();
    }
}

// ----------------------- getExclusiveComponent ------------------
Component * PhysicalModel::getExclusiveComponent ( const unsigned int i ) const {
    if ( !exclusiveComponents ) {
        return 0;
    } else {
        return exclusiveComponents->getSubComponent ( i );
    }
}

// ----------------------- getInformativeComponent ------------------
Component * PhysicalModel::getInformativeComponent ( const unsigned int i ) const {
    if ( !informativeComponents ) {
        return 0;
    } else {
        return informativeComponents->getSubComponent ( i );
    }
}


// ----------------------- exportAnsysMesh ------------------
void PhysicalModel::exportAnsysMesh ( std::string filename ) {
    //--- Writing nodes
    std::ofstream nodeFile;
    nodeFile.open ( ( filename + ".node" ).c_str() );

    if ( !nodeFile.is_open() ) {
        std::cerr << "Error in PhysicalModel::exportAnsysMesh : unable to create .node output file" << std::endl;
        return;
    }

    for ( unsigned int i = 0; i < getNumberOfAtoms(); i++ ) {
        double pos[3];
        //WARNING getAtom(i) do not work if indexes do not follow each others
        Atom* at= ( Atom* ) ( atoms->getStructure ( i ) );
        // WARNING : indexes are in base 1 !!!!
        unsigned int ansysIndex = at->getIndex() + 1;

        // coordinates of this node
        at->getPosition ( pos );

        nodeFile << std::setw ( 8 ) << ansysIndex << " ";
        for ( unsigned int j=0; j<3; j++ ) {
            nodeFile << std::setprecision ( 8 ) << std::setw ( 3 ) << std::fixed << std::scientific << pos[j] << "     ";
        }
        nodeFile << std::endl;
    }

    nodeFile.close();

    //--- Writing elements : exlusive cells
    std::ofstream elemFile;
    elemFile.open ( ( filename + ".elem" ).c_str() );

    if ( !elemFile.is_open() ) {
        std::cerr << "Error in PhysicalModel::exportAnsysMesh : unable to create .elem output file" << std::endl;
        return;
    }

    int MAT, TYPE;
    Component *elements = this->getComponentByName ( "Elements" );
    for ( unsigned int i = 0; i < elements->getNumberOfCells(); i++ ) {

        // get the cell
        Cell * cell = elements->getCell ( i );
        unsigned int ansysIndex = cell->getIndex() + 1;

        switch ( cell->getType() ) {

        case StructureProperties::HEXAHEDRON:

            // I,J,K,L,M,N,O,P,MAT,TYPE,REAL,SECNUM,ESYS,IEL
            //
            // Format hex:
            //   I,J,K,L,M,N,O,P                = indices des noeuds
            //   MAT,TYPE,REAL,SECNUM et ESYS   = attributes numbers
            //   SECNUM                         = beam section number
            //   IEL                            = element number

            MAT  = 1;
            TYPE = 1;

            for ( unsigned int k = 0; k < cell->getNumberOfStructures(); k++ ) {
                elemFile << " " << std::setw ( 5 ) << cell->getStructure ( k )->getIndex() + 1 ;
            }

            elemFile << " " << std::setw ( 5 ) << MAT << " " << std::setw ( 5 ) << TYPE << "     1     1     0 " << std::setw ( 5 ) << ansysIndex << std::endl;
            break;

        case StructureProperties::WEDGE:

            // I,J,K,L,M,N,O,P,MAT,TYPE,REAL,SECNUM,ESYS,IEL
            //
            // Format prism: on repete les noeuds 3 et 7:
            //   I,J,K,K,M,N,O,O                = indices des noeuds
            //   MAT,TYPE,REAL,SECNUM et ESYS   = attributes numbers
            //   SECNUM                         = beam section number
            //   IEL                            = element number
            MAT  = 1;
            TYPE = 1;

            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 0 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 1 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 2 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 2 )->getIndex() + 1;

            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 3 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 4 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 5 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 5 )->getIndex() + 1;

            elemFile << " " << std::setw ( 5 ) << MAT << " " << std::setw ( 5 ) << TYPE << "     1     1     0 " << std::setw ( 5 ) << ansysIndex << std::endl;

            break;


        case StructureProperties::TETRAHEDRON:

            MAT  = 1;
            TYPE = 1;

            elemFile << " " << std::setw ( 5 ) <<  cell->getStructure ( 0 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 1 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 2 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 3 )->getIndex() + 1;
            elemFile << "     0     0     0     0" ;

            elemFile << " " << std::setw ( 5 ) << MAT << " " << std::setw ( 5 ) << TYPE << "     1     1     0 " << std::setw ( 5 ) << ansysIndex << std::endl;
            break;



        case StructureProperties::QUAD:
            // I,J,K,L,M,N,O,P,MAT,TYPE,REAL,SECNUM,ESYS,IEL
            //
            // Format quad:
            //   I,J,K,K,L,L,L,L                = indices des noeuds
            //   MAT,TYPE,REAL,SECNUM et ESYS   = attributes numbers
            //   SECNUM                         = beam section number
            //   IEL                            = element number

            MAT  = 1;
            TYPE = 1;

            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 0 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 1 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 2 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 2 )->getIndex() + 1;

            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 3 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 3 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 3 )->getIndex() + 1;
            elemFile << " " << std::setw ( 5 ) << cell->getStructure ( 3 )->getIndex() + 1;

            elemFile << " " << std::setw ( 5 ) << MAT << " " << std::setw ( 5 ) << TYPE << "     1     1     0 " << std::setw ( 5 ) << ansysIndex << std::endl;
            break;


        default:
            std::cerr << "PhysicalModel::exportAnsysMesh : unknown type for cell " << cell->getIndex() + 1 << ", neither HEXAHEDRON, WEDGE, THETRAHEDRON nor QUAD. Cant' export in Patran format." << std::endl;
            continue;
        }

    }

    elemFile.close();
}


// ----------------------- exportPatran ------------------
void PhysicalModel::exportPatran ( std::string filename ) {
    std::ofstream outputFile;
    outputFile.open ( filename.c_str() );
    if ( !outputFile.is_open() ) {
        std::cerr << "Error in PhysicalModel::exportPatran : unable to create output file" << std::endl;
        return;
    }

    //--- patran header -> mostly useless info in our case...
    outputFile << "25       0       0       1       0       0       0       0       0\n";
    outputFile << "PATRAN File from: " << getName().c_str() << std::endl;
    outputFile << "26       0       0       1   " << this->getNumberOfAtoms() << "    " << this->getExclusiveComponent ( 0 )->getNumberOfCells() << "       3       4      -1\n";
    outputFile << "17-Mar-00   08:00:00         3.0\n";


    //--- Nodes (atoms)

    for ( unsigned int i = 0; i < this->getNumberOfAtoms(); i++ ) {
        double pos[3];

        // first line
        // WARNING : indexes are in base 1 !!!!
        outputFile << " 1" << std::setw ( 8 ) << getAtom ( i )->getIndex() + 1 << "       0       2       0       0       0       0       0\n";

        // coordinates of this node
        //  fscanf(inputFile, "%d %f %f %f", &j, &x, &y, &z);
        getAtom ( i )->getPosition ( pos );

        // second line : node coordinates
        for ( unsigned int j=0; j<3; j++ ) {
            outputFile << std::setprecision ( 8 ) << std::setw ( 16 ) << std::fixed << std::scientific << pos[j];
        }
        outputFile << " " << std::endl;

        // third line : ??
        outputFile << "1G       6       0       0  000000\n";
    }



    //--- Elements : exlusive cells
    for ( unsigned int i = 0; i < this->getExclusiveComponent ( 0 )->getNumberOfCells(); i++ ) {
        int typeElement;

        // get the cell
        Cell * cell = this->getExclusiveComponent ( 0 )->getCell ( i );

        switch ( cell->getType() ) {

        case StructureProperties::HEXAHEDRON:
            typeElement = 8;
            break;

        case StructureProperties::WEDGE:
            typeElement = 7;
            break;

        default:
            std::cerr << "PhysicalModel::exportPatran : unknown type for cell " << cell->getIndex() + 1 << ", neither HEXAHEDRON nor WEDGE. Cant' export in Patran format." << std::endl;
            continue;
        }

        // first element line
        outputFile << " 2" << std::setw ( 8 ) <<  cell->getIndex() + 1 << std::setw ( 8 ) << typeElement << "       2       0       0       0       0       0\n";

        // second element line
        outputFile << std::setw ( 8 ) << cell->getNumberOfStructures() << "       0       1       0 0.000000000E+00 0.000000000E+00 0.000000000E+00\n";

        // third element line : list of nodes
        for ( unsigned int k = 0; k < cell->getNumberOfStructures(); k++ ) {
            outputFile << std::setw ( 8 ) << cell->getStructure ( k )->getIndex() + 1;
        }

        outputFile << "\n";
    }

    //--- final line
    outputFile << "99       0       0       1       0       0       0       0       0\n" ;

    outputFile.close();
}