1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
|
/*****************************************************************************
* $CAMITK_LICENCE_BEGIN$
*
* CamiTK - Computer Assisted Medical Intervention ToolKit
* (c) 2001-2025 Univ. Grenoble Alpes, CNRS, Grenoble INP - UGA, TIMC, 38000 Grenoble, France
*
* Visit http://camitk.imag.fr for more information
*
* This file is part of CamiTK.
*
* CamiTK is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* CamiTK is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with CamiTK. If not, see <http://www.gnu.org/licenses/>.
*
* $CAMITK_LICENCE_END$
****************************************************************************/
#include "numpy_utils.h"
#include <Application.h>
#include <vtkDoubleArray.h>
#include <vtkFloatArray.h>
#include <Log.h>
namespace camitk {
// -------------------- vtkImageDataToNumpyTemplated --------------------
template <typename T>
py::array_t<T> vtkImageDataToNumpyTemplated(vtkSmartPointer<vtkImageData> image) {
int dims[3];
image->GetDimensions(dims);
int numComponents = image->GetNumberOfScalarComponents();
const T* vtkData = static_cast<const T*>(image->GetScalarPointer());
if (!vtkData) {
throw std::runtime_error("Invalid or null VTK image scalar pointer");
}
// Get VTK's actual increments (strides in elements, not bytes)
vtkIdType increments[3];
image->GetIncrements(increments);
std::vector<size_t> shape;
std::vector<size_t> strides;
size_t x = static_cast<size_t>(dims[0]);
size_t y = static_cast<size_t>(dims[1]);
size_t z = static_cast<size_t>(dims[2]);
if (numComponents == 1) {
// Black and White image (just one value per voxel)
if (z == 1) {
// 2D image
shape = { y, x };
strides = {
static_cast<size_t>(increments[1])* sizeof(T), // Y stride
static_cast<size_t>(increments[0])* sizeof(T) // X stride
};
}
else {
// 3D image
shape = { z, y, x };
strides = {
static_cast<size_t>(increments[2])* sizeof(T), // Z stride
static_cast<size_t>(increments[1])* sizeof(T), // Y stride
static_cast<size_t>(increments[0])* sizeof(T) // X stride
};
}
}
else {
// numComponents > 1 (e.g. RGB voxels)
if (z == 1) {
// 2D image with components
shape = { y, x, static_cast<size_t>(numComponents) };
strides = {
static_cast<size_t>(increments[1])* sizeof(T), // Y stride
static_cast<size_t>(increments[0])* sizeof(T), // X stride
sizeof(T) // Component stride (always 1 element)
};
}
else {
// 3D image with components
shape = { z, y, x, static_cast<size_t>(numComponents) };
strides = {
static_cast<size_t>(increments[2])* sizeof(T), // Z stride
static_cast<size_t>(increments[1])* sizeof(T), // Y stride
static_cast<size_t>(increments[0])* sizeof(T), // X stride
sizeof(T) // Component stride
};
}
}
// Create the numpy array from the vtkBuffer
return py::array_t<T>(
py::buffer_info(
const_cast<T*>(vtkData),
sizeof(T),
py::format_descriptor<T>::format(),
shape.size(),
shape,
strides
)
).attr("copy")();
}
// -------------------- vtkImageDataToNumpy --------------------
py::array vtkImageDataToNumpy(vtkSmartPointer<vtkImageData> image) {
py::array numpyArray;
int vtkType = image->GetScalarType();
switch (vtkType) {
case VTK_TYPE_INT8:
numpyArray = vtkImageDataToNumpyTemplated<int8_t>(image);
break;
case VTK_TYPE_UINT8:
numpyArray = vtkImageDataToNumpyTemplated<uint8_t>(image);
break;
case VTK_TYPE_INT16:
numpyArray = vtkImageDataToNumpyTemplated<int16_t>(image);
break;
case VTK_TYPE_UINT16:
numpyArray = vtkImageDataToNumpyTemplated<uint16_t>(image);
break;
case VTK_TYPE_INT32:
numpyArray = vtkImageDataToNumpyTemplated<int32_t>(image);
break;
case VTK_TYPE_UINT32:
numpyArray = vtkImageDataToNumpyTemplated<uint32_t>(image);
break;
case VTK_TYPE_INT64:
numpyArray = vtkImageDataToNumpyTemplated<int64_t>(image);
break;
case VTK_TYPE_UINT64:
numpyArray = vtkImageDataToNumpyTemplated<uint64_t>(image);
break;
case VTK_FLOAT:
numpyArray = vtkImageDataToNumpyTemplated<float>(image);
break;
case VTK_DOUBLE:
numpyArray = vtkImageDataToNumpyTemplated<double>(image);
break;
default:
throw std::runtime_error("Unsupported VTK scalar type");
}
return numpyArray;
}
// -------------------- getVtkImageDataSpacing --------------------
py::array getVtkImageDataSpacing(vtkSmartPointer<vtkImageData> image) {
double spacing[3];
image->GetSpacing(spacing);
return py::make_tuple(spacing[0], spacing[1], spacing[2]);
}
// -------------------- vtkPointSetToNumpy --------------------
py::array vtkPointSetToNumpy(vtkSmartPointer<vtkPointSet> pointSet) {
vtkPoints* points = pointSet->GetPoints();
vtkDataArray* dataArray = points->GetData();
if (!dataArray) {
throw std::runtime_error("vtkPoints has no data array");
}
// Determine the number of points and components
vtkIdType numPoints = dataArray->GetNumberOfTuples();
int numComponents = dataArray->GetNumberOfComponents();
// Get pointer to the raw data
void* dataPtr = dataArray->GetVoidPointer(0);
// Determine the data type and corresponding format descriptor
int vtkType = dataArray->GetDataType();
std::string format;
size_t itemSize;
switch (vtkType) {
case VTK_FLOAT:
format = py::format_descriptor<float>::format();
itemSize = sizeof(float);
break;
case VTK_DOUBLE:
format = py::format_descriptor<double>::format();
itemSize = sizeof(double);
break;
// Add more cases as needed
default:
throw std::runtime_error("Unsupported VTK data type");
}
// Define shape and strides
std::vector<py::ssize_t> shape = { numPoints, numComponents };
std::vector<py::ssize_t> strides = { static_cast<py::ssize_t>(itemSize * numComponents), static_cast<py::ssize_t>(itemSize) };
// Create buffer_info
py::buffer_info bufferInfo(
dataPtr, // Pointer to buffer
itemSize, // Size of one scalar
format, // Python struct-style format descriptor
2, // Number of dimensions
shape, // Buffer dimensions
strides // Strides (in bytes) for each index
);
// Create numpy array from buffer_info
return py::array(bufferInfo);
}
// -------------------- vtkType --------------------
/// Automatic conversion from info.format descriptor to Vtk types
/// Using direct conversion for C++ int types that contains fixed size (8,16,32,64) and signed/unsigned flag
/// to VTK corresponding type
template<typename T> constexpr int vtkType();
template<> constexpr int vtkType<int8_t>() {
return VTK_TYPE_INT8;
}
template<> constexpr int vtkType<uint8_t>() {
return VTK_TYPE_UINT8;
}
template<> constexpr int vtkType<int16_t>() {
return VTK_TYPE_INT16;
}
template<> constexpr int vtkType<uint16_t>() {
return VTK_TYPE_UINT16;
}
template<> constexpr int vtkType<int32_t>() {
return VTK_TYPE_INT32;
}
template<> constexpr int vtkType<uint32_t>() {
return VTK_TYPE_UINT32;
}
template<> constexpr int vtkType<int64_t>() {
return VTK_TYPE_INT64;
}
template<> constexpr int vtkType<uint64_t>() {
return VTK_TYPE_UINT64;
}
template<> constexpr int vtkType<float>() {
return VTK_FLOAT;
}
template<> constexpr int vtkType<double>() {
return VTK_DOUBLE;
}
// -------------------- numpyToVTKImageDataTemplated --------------------
template<typename T>
vtkSmartPointer<vtkImageData> numpyToVTKImageDataTemplated(const pybind11::array_t<T>& array) {
pybind11::buffer_info info = array.request();
int ndim = static_cast<int>(info.shape.size());
if (ndim < 2 || ndim > 4) {
throw std::runtime_error("Unsupported NumPy array shape. Expected 2D grayscale/color or 3D/4D volumetric image.");
}
// Initialize dimensions and strides
py::ssize_t zSize = 1;
py::ssize_t ySize = 1;
py::ssize_t xSize = 1;
py::ssize_t zStride = 0;
py::ssize_t yStride = 0;
py::ssize_t xStride = 0;
py::ssize_t componentStride = 1;
py::ssize_t components = 1;
// Determine values depending on ndim
if (ndim == 2) {
// 2D grayscale: (H, W)
ySize = info.shape[0];
xSize = info.shape[1];
yStride = info.strides[0] / info.itemsize;
xStride = info.strides[1] / info.itemsize;
zStride = xSize * ySize; // unused, but valid
}
else if (ndim == 3) {
// Distinguish 2D RGB vs 3D grayscale
if (info.shape[2] == 3 || info.shape[2] == 4) {
// 2D RGB/RGBA: (H, W, C)
// WARNING a 3D image with only 3 or 4 slices will be considered as a 2D RGB/RGBA image
ySize = info.shape[0];
xSize = info.shape[1];
components = info.shape[2];
yStride = info.strides[0] / info.itemsize;
xStride = info.strides[1] / info.itemsize;
componentStride = info.strides[2] / info.itemsize;
zStride = xSize * ySize * components; // unused, but valid
}
else {
// 3D grayscale: (D, H, W) → VTK (W, H, D)
zSize = info.shape[0];
ySize = info.shape[1];
xSize = info.shape[2];
zStride = info.strides[0] / info.itemsize;
yStride = info.strides[1] / info.itemsize;
xStride = info.strides[2] / info.itemsize;
}
}
else {
// ndim == 4
// 3D with channels: (D, H, W, C) → VTK (W, H, D, C)
zSize = info.shape[0];
ySize = info.shape[1];
xSize = info.shape[2];
components = info.shape[3];
zStride = info.strides[0] / info.itemsize;
yStride = info.strides[1] / info.itemsize;
xStride = info.strides[2] / info.itemsize;
componentStride = info.strides[3] / info.itemsize;
}
// Create VTK image
vtkSmartPointer<vtkImageData> image = vtkSmartPointer<vtkImageData>::New();
image->SetDimensions(xSize, ySize, zSize);
image->AllocateScalars(vtkType<T>(), components);
if (image->GetScalarSize() != sizeof(T)) {
throw std::runtime_error("Unable to convert from NumPy array type to VTK scalar. Size does not match.");
}
const size_t totalSize = xSize * ySize * zSize;
T* src = static_cast<T*>(info.ptr);
T* dst = static_cast<T*>(image->GetScalarPointer());
// Check if we can use fast contiguous copy
bool canUseFastCopy = false;
// More robust contiguity check
if (ndim == 2) {
// 2D grayscale: expect stride pattern [W, 1]
canUseFastCopy = (xStride == 1) && (yStride == xSize);
}
else if (ndim == 3 && components > 1) {
// 2D RGB: expect stride pattern [W*C, C, 1]
canUseFastCopy = (componentStride == 1) &&
(xStride == components) &&
(yStride == xSize * components);
}
else if (ndim >= 3 && components == 1) {
// 3D grayscale: expect stride pattern [H*W, W, 1]
canUseFastCopy = (xStride == 1) &&
(yStride == xSize) &&
(zStride == xSize * ySize);
}
else if (ndim == 4) {
// 3D with channels: expect stride pattern [H*W*C, W*C, C, 1]
canUseFastCopy = (componentStride == 1) &&
(xStride == components) &&
(yStride == xSize * components) &&
(zStride == xSize * ySize * components);
}
// CAMITK_INFO_ALT(QString("python buffer_info:\n- size(%1,%2,%3)\n- stride(%4,%5,%6)\n- item_size: %7\n- component: %8\n- componentStride: %9")
// .arg(info.shape[0]).arg(info.shape[1]).arg((ndim>2)?info.shape[2]:-1).arg(info.strides[0]).arg(info.strides[1]).arg((ndim>2)?info.strides[2]:-1).arg(info.itemsize).arg(components).arg(componentStride))
// CAMITK_INFO_ALT(QString("VTK: image->SetDimensions(%1, %2, %3), components: %4, VTK type size: %5, numpy type size: %6")
// .arg(xSize).arg(ySize).arg(zSize).arg(components).arg(image->GetScalarSize()).arg(sizeof(T)))
// CAMITK_INFO_ALT(QString("%1").arg(canUseFastCopy?"Using fast copy":"Not using fast copy"))
if (canUseFastCopy) {
// Fast copy for contiguous data
std::memcpy(dst, src, totalSize * components * sizeof(T));
}
else {
// Element-by-element copy with proper component handling
for (size_t z = 0; z < zSize; ++z) {
for (size_t y = 0; y < ySize; ++y) {
for (size_t x = 0; x < xSize; ++x) {
// VTK index (interleaved components)
size_t vtk_base_index = (x + y * xSize + z * xSize * ySize) * components;
// Copy all components
for (size_t comp = 0; comp < components; ++comp) {
// NumPy index with proper component stride
size_t numpy_index = x * xStride + y * yStride + z * zStride + comp * componentStride;
dst[vtk_base_index + comp] = src[numpy_index];
}
}
}
}
}
return image;
}
// -------------------- numpyToVTKImageData --------------------
// non templated dispatcher
vtkSmartPointer<vtkImageData> numpyToVTKImageData(const pybind11::array& numpyArray) {
const auto dtype = numpyArray.dtype();
if (dtype.is(py::dtype::of<int8_t>())) {
return numpyToVTKImageDataTemplated<int8_t>(numpyArray.cast<py::array_t<int8_t>>());
}
else if (dtype.is(py::dtype::of<uint8_t>())) {
return numpyToVTKImageDataTemplated<uint8_t>(numpyArray.cast<py::array_t<uint8_t>>());
}
else if (dtype.is(py::dtype::of<int16_t>())) {
return numpyToVTKImageDataTemplated<int16_t>(numpyArray.cast<py::array_t<int16_t>>());
}
else if (dtype.is(py::dtype::of<uint16_t>())) {
return numpyToVTKImageDataTemplated<uint16_t>(numpyArray.cast<py::array_t<uint16_t>>());
}
else if (dtype.is(py::dtype::of<int32_t>())) {
return numpyToVTKImageDataTemplated<int32_t>(numpyArray.cast<py::array_t<int32_t>>());
}
else if (dtype.is(py::dtype::of<uint32_t>())) {
return numpyToVTKImageDataTemplated<uint32_t>(numpyArray.cast<py::array_t<uint32_t>>());
}
else if (dtype.is(py::dtype::of<int64_t>())) {
return numpyToVTKImageDataTemplated<int64_t>(numpyArray.cast<py::array_t<int64_t>>());
}
else if (dtype.is(py::dtype::of<uint64_t>())) {
return numpyToVTKImageDataTemplated<uint64_t>(numpyArray.cast<py::array_t<uint64_t>>());
}
else if (dtype.is(py::dtype::of<float>())) {
return numpyToVTKImageDataTemplated<float>(numpyArray.cast<py::array_t<float>>());
}
else if (dtype.is(py::dtype::of<double>())) {
return numpyToVTKImageDataTemplated<double>(numpyArray.cast<py::array_t<double>>());
}
else {
throw std::runtime_error("Unsupported numpy array data type");
}
return nullptr;
}
// -------------------- newImageComponentFromNumpy --------------------
// build a new image component from a numpy array (check for unique name)
ImageComponent* newImageComponentFromNumpy(const py::array& numpyArray, const std::string& name, py::object spacingObj) {
vtkSmartPointer<vtkImageData> imgData = numpyToVTKImageData(numpyArray);
QString uniqueName = Application::getUniqueComponentName(name.c_str());
// Set spacing if provided
double spacing[3] = {1.0, 1.0, 1.0};
if (!spacingObj.is_none()) {
py::tuple spacingTuple = spacingObj.cast<py::tuple>();
if (spacingTuple.size() == 3) {
spacing[0] = spacingTuple[0].cast<double>();
spacing[1] = spacingTuple[1].cast<double>();
spacing[2] = spacingTuple[2].cast<double>();
}
}
imgData->SetSpacing(spacing);
ImageComponent* img = new ImageComponent(imgData, uniqueName);
return img;
}
// -------------------- numpyToVtkPoints --------------------
vtkSmartPointer<vtkPoints> numpyToVtkPoints(py::array_t < double, py::array::c_style | py::array::forcecast > pointsArray) {
py::ssize_t numPoints = pointsArray.shape(0);
// Create and fill vtkPoints
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
points->SetDataTypeToDouble(); // Force double for simplicity
points->SetNumberOfPoints(numPoints);
const double* pointsPtr = static_cast<const double*>(pointsArray.data());
for (vtkIdType i = 0; i < numPoints; ++i) {
points->SetPoint(i, pointsPtr + 3 * i);
}
return points;
}
// -------------------- numpyToVtkPointSet --------------------
vtkSmartPointer<vtkPointSet> numpyToVtkPointSet(py::array_t < double, py::array::c_style | py::array::forcecast > pointsArray,
py::array_t < vtkIdType, py::array::c_style | py::array::forcecast > polysArray) {
//--1. Convert array to vtkPoints
if (pointsArray.ndim() != 2 || pointsArray.shape(1) != 3) {
throw std::runtime_error("Points array must have shape (N,3)");
}
vtkSmartPointer<vtkPoints> points = numpyToVtkPoints(pointsArray);
// No polys? => return a point cloud only
if (!polysArray || polysArray.size() == 0) {
vtkSmartPointer<vtkPolyData> polydata = vtkSmartPointer<vtkPolyData>::New();
polydata->SetPoints(points);
// create a cell with all the points
vtkNew<vtkCellArray> verts;
verts->InsertNextCell(points->GetNumberOfPoints());
for (vtkIdType i = 0; i < points->GetNumberOfPoints(); ++i) {
verts->InsertCellPoint(i);
}
polydata->SetVerts(verts);
return polydata;
}
//--2. Convert poly to vtkUnstructuredGrid
// If the vtkCell type is not uniform in the polysArray structure, this method will probably not work
if (polysArray.ndim() != 2 || polysArray.shape(1) < 2) {
throw std::runtime_error("Polys array must have shape (M, N+1) where first column is the point count for each poly.");
}
py::ssize_t numCells = polysArray.shape(0);
// We will use vtkUnstructuredGrid if general cells (quad, hex, etc.)
auto grid = vtkSmartPointer<vtkUnstructuredGrid>::New();
grid->SetPoints(points);
const vtkIdType* polysPtr = static_cast<const vtkIdType*>(polysArray.data());
py::ssize_t stride = polysArray.shape(1); // use the same stride of all vtkCell (might not work)
for (vtkIdType i = 0; i < numCells; ++i) {
const vtkIdType* cellData = polysPtr + i * stride;
vtkIdType numVerts = cellData[0];
const vtkIdType* pointIds = cellData + 1;
uint8_t cellType;
switch (numVerts) {
case 1: // 1 point id → vertex
cellType = VTK_VERTEX;
break;
case 2: // 2 point ids → line
cellType = VTK_LINE;
break;
case 3: // 3 point ids → triangle
cellType = VTK_TRIANGLE;
break;
case 4: // 4 points ids → quad (or VTK_TETRA! but not implemented yet)
cellType = VTK_QUAD;
break;
// 5 = VTK_PYRAMID
// 6 = VTK_WEDGE
// 8 = VTK_HEXAHEDRON
default:
throw std::runtime_error("Unsupported cell with " + std::to_string(numVerts) + " points.");
}
vtkSmartPointer<vtkIdList> idList = vtkSmartPointer<vtkIdList>::New();
for (vtkIdType j = 0; j < numVerts; ++j) {
idList->InsertNextId(pointIds[j]);
}
grid->InsertNextCell(cellType, idList);
}
return grid;
}
// -------------------- newMeshComponentFromNumpy --------------------
MeshComponent* newMeshComponentFromNumpy(const std::string& name, py::array_t < double, py::array::c_style | py::array::forcecast > points_array, py::array_t < vtkIdType, py::array::c_style | py::array::forcecast > polys_array) {
vtkSmartPointer<vtkPointSet> pointSet = numpyToVtkPointSet(points_array, polys_array);
QString uniqueName = Application::getUniqueComponentName(name.c_str());
MeshComponent* msh = new MeshComponent(pointSet, uniqueName);
return msh;
}
// -------------------- vtkDataArrayToNumpy --------------------
py::array vtkDataArrayToNumpy(vtkSmartPointer<vtkDataArray> array) {
int nTuples = array->GetNumberOfTuples();
int nComps = array->GetNumberOfComponents();
void* raw_ptr = array->GetVoidPointer(0);
// Determine VTK type and wrap
switch (array->GetDataType()) {
case VTK_DOUBLE:
return py::array_t<double>({nTuples, nComps}, static_cast<double*>(raw_ptr));
case VTK_FLOAT:
return py::array_t<float>({nTuples, nComps}, static_cast<float*>(raw_ptr));
case VTK_INT:
return py::array_t<int>({nTuples, nComps}, static_cast<int*>(raw_ptr));
default:
throw std::runtime_error("Unsupported VTK data type");
}
}
// -------------------- numpyToVtkDataArray --------------------
vtkSmartPointer<vtkDataArray> numpyToVtkDataArray(py::array array) {
py::buffer_info info = array.request();
int nTuples = info.shape[0];
int nComps = (info.ndim > 1) ? info.shape[1] : 1;
if (info.format == py::format_descriptor<double>::format()) {
vtkSmartPointer<vtkDoubleArray> array = vtkSmartPointer<vtkDoubleArray>::New();
array->SetNumberOfComponents(nComps);
array->SetNumberOfTuples(nTuples);
array->SetArray(static_cast<double*>(info.ptr), nTuples * nComps, 1);
return array;
}
else if (info.format == py::format_descriptor<float>::format()) {
vtkSmartPointer<vtkFloatArray> array = vtkSmartPointer<vtkFloatArray>::New();
array->SetNumberOfComponents(nComps);
array->SetNumberOfTuples(nTuples);
array->SetArray(static_cast<float*>(info.ptr), nTuples * nComps, 1);
return array;
}
else if (info.format == py::format_descriptor<int>::format()) {
vtkSmartPointer<vtkIntArray> array = vtkSmartPointer<vtkIntArray>::New();
array->SetNumberOfComponents(nComps);
array->SetNumberOfTuples(nTuples);
array->SetArray(static_cast<int*>(info.ptr), nTuples * nComps, 1);
return array;
}
else {
throw std::runtime_error("Unsupported NumPy data type");
}
}
// -------------------- numpyToVtkTransform --------------------
vtkSmartPointer<vtkTransform> numpyToVtkTransform(py::array array) {
py::buffer_info info = array.request();
// Check input shape (must be 4x4)
if (info.ndim != 2 || info.shape[0] != 4 || info.shape[1] != 4 || info.format != py::format_descriptor<double>::format()) {
throw std::runtime_error("numpyToVtkMatrix4x4: array must be a 4x4 array of float64.");
}
// Pointer to NumPy data (row-major) (no need to transpose)
double* data = static_cast<double*>(info.ptr);
vtkSmartPointer<vtkMatrix4x4> mat = vtkSmartPointer<vtkMatrix4x4>::New();
// Copy values row-major → VTK's row-major
for (int r = 0; r < 4; ++r) {
for (int c = 0; c < 4; ++c) {
mat->SetElement(r, c, data[r * 4 + c]);
}
}
// Create a vtkTransform from the matrix
vtkSmartPointer<vtkTransform> tr = vtkSmartPointer<vtkTransform>::New();
tr->SetMatrix(mat);
return tr;
}
} // namespace camitk
|