File: camitk.pyi

package info (click to toggle)
camitk 6.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 389,496 kB
  • sloc: cpp: 103,476; sh: 2,448; python: 1,618; xml: 984; makefile: 128; perl: 84; sed: 20
file content (2148 lines) | stat: -rw-r--r-- 94,311 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
"""

CamiTK Python Bindings
========================

This module provides Python bindings for CamiTK core functionalities.
It allows one to access core classes and methods from Action Python scripts.

**NOTE**

    This module is intended to be used within CamiTK Application context.
    It is meant to be used in Action Python scripts from inside a CamiTK application Python interpreter, and not as a standalone library.

**Available classes and functions**

- Action: Action class is an abstract class that enables you to build a action (generally an algorithm that works on specific data, i.
- Application: The generic/default application.
- Component: A Component represents something that could be included in the explorer view, the interactive 3D viewer, and that could have or not a contextual popup menu (open by a right click in the explorer), a property dialog (to change some properties) Thus, a Component inherits from many abstract classes.
- ComponentExtension: This class describes what is a generic Component extension.
- Core: Core class specifies the basic static information for the CamiTK API.
- ExtensionManager: This class is used to manage all plugins loaded by the application.
- FrameOfReference: FrameOfReference is only a label for an abstract coordinate system.
- HotPlugAction: An Action that can be created on the fly.
- ImageComponent: The manager of the Image Volume data.
- InterfaceBitMap: This class describes what are the methods to implement for a BitMap.
- InterfaceFrame: This class describes the methods to implement in order to manage a Component position in space.
- InterfaceGeometry: This class describes what are the methods to implement for a Geometry (rendering parameters, input/output, filters, picking parameters.
- InterfaceNode: This class describe what are the methods to implement for a hierarchical tree node.
- InterfacePersistence: Interface for all objects that should be serialized by the PersistenceManager.
- InterfaceProperty: This class describes what are the methods to implement in order to manage dynamic properties.
- Log: This class is a log utility.
- MeshComponent: Basic component to manage any kind of mesh.
- Property: This class describes a property that can be used in components and actions or any class that needs to be passed to ObjectController.
- Transformation: Transformation represents a geometrical transformation between two FrameOfReferences  It supports linear and non-linear transforms stored in a vtkTransform (linear) or any vtkAbstractTransform (non-linear)  It has a direction (from a FrameOfReference to another FrameOfReference)  Its constructor is private as Transformation objects must only be created through TransformationManager::getTransformationManager() (although it is possible to instantiate your own TransformationManager if you know what you're doing!)  .
- TransformationManager: TransformationManager manages frames of reference and transformations for a CamiTK Application  This class is the entry point to using FrameOfReference and Transformation system.



"""
from __future__ import annotations
import numpy
import typing
__all__: list[str] = ['Action', 'Application', 'Component', 'ComponentExtension', 'Core', 'ExtensionManager', 'FrameOfReference', 'HotPlugAction', 'ImageComponent', 'InterfaceBitMap', 'InterfaceFrame', 'InterfaceGeometry', 'InterfaceNode', 'InterfacePersistence', 'InterfaceProperty', 'Log', 'MeshComponent', 'Property', 'PythonHotPlugAction', 'Transformation', 'TransformationManager', 'error', 'getDebugInfo', 'getPythonVersion', 'info', 'newImageComponentFromNumpy', 'newMeshComponentFromNumpy', 'pythonConsoleRedirect', 'redirectStandardStreams', 'refresh', 'show', 'startApplication', 'trace', 'warning']
class Action:
    """
    Action class is an abstract class that enables you to build a action
    (generally an algorithm that works on specific data, i.e. a specific
    component).
    
    To write an new action extension, at least two classes have to be
    reimplemented to enable the action: ActionExtension + Action. All the
    plugin mechanism is simplified thanks to CamiTK extension files (a
    JSON file containing all the information to generate the glue between
    your code and CamiTK).
    
    ## Overview
    
    This is the list of attributes you need to consider when creating a
    new action - name: name of the action; - description: tag used to
    describe the action (also used for tooltip and whatsThis of the
    corresponding QAction); - componentClassName: the name of the
    component class on which this action can be applied or "" (default)
    for generic actions. It determines on which type of component your
    action can be applied. Generic actions are action that have an empty
    component class name. Therefore generic actions can be called to
    generate/synthetize data or initialize resources. - family: families
    of actions allows one to group different actions of the same kind
    under one name; - tags: tags is a list of words used to define an
    action. These words can be used to find an action. - gui: either
    "Default Action GUI" (the action uses a default widget, instance of
    ActionWidget), "No GUI" or "Custom GUI" (you need to create the
    action's gui widget) - notEmbedded: this boolean defines if the gui
    widget is embedded in a given parent widget / action widget container
    (true by default) or not - icon: the icon used for the visually
    distinguish the action (used by the corresponding QAction)
    
    .. note::
        An Action has a corresponding QAction, see getQAction(), that
        makes it easy to trigger an action from any Qt GUI (menus,
        toolbar, push buttons...). You can also call your action
        programmatically from any other code.
    
    If the component class name is not empty, the action is using the
    currently selected components of the given type (class name). If the
    component class name is empty, the action does not need any input.
    
    ## Using CamiTK extension file
    
    Using CamiTK extension file simplifies the creation and modification
    of actions. When using a CamiTK extension file, the extension
    generator will generate a initial .cpp file that you just have to fill
    in with your source code.
    
    These are the five methods you need to consider for customization: -
    `init()` is called when the action is loaded by the extension manager
    (i.e., when the action is instantiated). This is where all instance
    wide initialization should be done - `process()` is called when the
    user presses the "Apply" button. This is the main code for the action,
    where things are done - `targetDefined()` is called when the target of
    the action are defined (i.e., when the action is triggered). It is
    generally used to update the action GUI - `parameterChanged()` is
    called when a parameter value has changed. Similarly to
    `targetDefined()` it can be used to update the action GUI - (optional)
    `getUI()` if the developer wants to have a custom GUI, this is where
    she/he should instantiate the corresponding widget(s)
    
    You can call refreshApplication() in order to force the viewers to
    refresh.
    
    ## Action Parameters
    
    Action parameters are automatically created from the CamiTK extension
    files. Each parameter is defined as a Qt dynamic property. In your C++
    code it is strongly recommended to use: - getParameterValue("My
    Parameter") to get the value as a QVariant (you can they use
    toString(), toBool(), toDouble()... depending on the type of "My
    Parameter") - setParameterValue("My Parameter", newValue) to set the
    value of a parameter programmatically (newValue must be a QVariant or
    of type that can be converted to a QVariant) -
    getParameterValueAsString("My Parameter") to get a string
    representation of the value of "My Parameter"
    
    ## Default GUI, Custom GUI or no GUI?
    
    An Action generally is used to wrap an algorithm in CamiTK. If this
    algorithm has parameters, it is very easy to get these parameters
    accessible to the user through the ActionWidget. These parameters are
    in fact defined as Qt dynamic properties.
    
    The default widget is an instance of ActionWidget. If ActionWidget
    does not correspond to what you need, just declare your action as
    having a Custom Widget You will then need to create a new class
    inheriting from QWidget, or directly from ActionWidget.
    
    These are the use cases for using the default behaviour (i.e. an
    instance of ActionWidget): - your action has some parameters and you
    need the user to review the default or modify their values before the
    action is applied, - or your action has no parameters but you still
    want the user to be applied only if/when the user click on an apply
    button.
    
    ActionWidget should be good enough in most of the cases. The default
    widget contains a description, a reminder of the current target
    component names, and an ObjectController with an Apply/Revert buttons
    that allows you to edit/modify properties. Use
    setDefaultWidgetButtonVisibility() to change the visibility of the
    Apply/Revert buttons and setDefaultWidgetApplyButtonText() to change
    the apply button text.
    
    When an action has no GUI triggering the action will directly call
    process()
    
    .. note::
        The recommended architecture is for the action widget to call the
        action's apply method. The widget should only manage user
        interaction.
    
    ## Underlying triggering and applying an action mechanism
    
    Two steps have to be considered when using an action: - Step 1,
    trigger(): the action is either directly applied (if it does not have
    any GUI) or it's GUI is shown (using getWidget()) - Step 2, apply():
    only the action algorithm is applied, i.e., the data are processed
    
    The targets can have changed between the time the action is first
    triggered and the time the action is applied. getWidget() is always
    called when the targets are updated. Therefore whenever getWidget() is
    called, you should make sure to update the the action GUI
    consequently. getTargets() is always updated in trigger() and
    available.
    
    .. note::
        trigger() and apply() are public slots. They can be called either
        directly (classic C++ method invocation) or by connecting them to
        a QWidget signal.
    
    When an action is triggered (e.g., by right clicking in the context
    menu), the following algorithm applies, see trigger(): - 1. Prepare
    targetComponents (available with getTargets()): only select the
    compatible components from the selected components - 2. If the action
    is embedded, get the widget and show it in a parent/container (if
    parent is not specified, show it in the action viewer) - 3. If the
    action in not embedded, show it as a dialog - 4. If the action does
    not have any widget, directly call apply()
    
    This means that, if there is a widget, the action algorithm is
    controlled by the action widget, i.e. apply() is not called by
    trigger() but should be called by one of the action widget's button.
    
    If ActionWidget is not what your need, a typical getUI() method should
    use the lazy instantiation pattern to instantiate
    MyVerySpecialActionWidget the first time it is called, and call the
    MyVerySpecialActionWidget instance's updateTargets() method for any
    subsequent calls. Something like:
    
    ```
    QWidget *MyAction::getUI() {
        // build or update the widget
        if (!myWidget)
            myWidget = new MyVerySpecialActionWidget(this);
        else
            // MyVerySpecialActionWidget should have an update() method
            myWidget->update();
    
        return myWidget;
     }
    ```
    
    But of course you can also use any kind of widget you like.
    ActionWidget is just defining a default widget for an action. If your
    action does not have any GUI/parameters, add a getWidget() and return
    nullptr.
    
    By default the properties/parameters are automatically updated when
    the user change the default widget, they are updated only when the
    user click on the apply button of the default widget. The
    setAutoUpdateProperties(true) to automatically called. Use
    parameterChanged() to perform some action when a parameter was changed
    byt the user.
    
    By default the action's widget is embedded. If you do not want to
    embed your action's widget, modify the "notEmbedded" parameter. When
    embedded, the parent widget has to be given at triggered time (i.e.
    getUI() is called during trigger). If there is no parent given for an
    embedded action, then the action is embedded in the ActionViewer by
    default.
    
    The method apply() must be implemented in your Action.
    
    .. note::
        at any moment, the selected components on which the action needs
        to be applied are available by getTargets(). targetComponents is
        filtered so that it only contains compatible components (i.e.,
        instances of getComponent()).
    
    .. note::
        About registering your action in the history of the application.
        Consider registering your action within the application's history
        once applied. The history of action features a stack of processed
        action. The application's history of actions allows one to export
        the saved actions as an XML file for scripting or replaying it. To
        do so, implement the apply() method in your code, then launch the
        method applyAndRegister(), which simply wraps the apply() method
        with the preProcess() and postProcess() methods. You may also
        connect a SIGNAL to it, as the applyAndRegister() method is a Qt
        SLOT.
    
    ## Creating a pipeline of actions
    
    A pipeline of actions is a state machine where each state stands for
    an action with inputs and output components. The transitions between
    the states are done by processing the state's action (i.e. by calling
    the corresponding action's apply() method). Interpreting an pipeline
    of action is simpler than simply executing the action since the user
    doesn't need to manually set the inputs and outputs of each action (it
    is done automatically). If you are willing to write such a pipeline,
    simply implements the apply() method of each of your action and called
    the applyInPipeline() (instead of simply apply()). The method
    applyInPipeline() performs some pre- and post-processing around the
    method apply(). It has to be used within a pipeline (a chain of
    actions) where setInputComponents() and getOutputComponents() are
    needed. preProcessInPipeline() only selects the right components, and
    postProcess() sets output components and record history.
    
    See also:
        RenderingOption For a simple example of an embedded action
    
    See also:
        RigidTransform For a simple example of a non-embedded action
    
    See also:
        ChangeColor For a simple example of an action with no widget (but
        with a GUI)
    """
    class ApplyStatus:
        """
        \\enum ApplyStatus describes what happened during the application of an
        algorithm (i.e. results of the apply method)
        
        Members:
        
          SUCCESS
        
          ERROR
        
          WARNING
        
          ABORTED
        
          TRIGGERED
        """
        ABORTED: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.ABORTED: 3>
        ERROR: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.ERROR: 1>
        SUCCESS: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.SUCCESS: 0>
        TRIGGERED: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.TRIGGERED: 4>
        WARNING: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.WARNING: 2>
        __members__: typing.ClassVar[dict[str, Action.ApplyStatus]]  # value = {'SUCCESS': <ApplyStatus.SUCCESS: 0>, 'ERROR': <ApplyStatus.ERROR: 1>, 'WARNING': <ApplyStatus.WARNING: 2>, 'ABORTED': <ApplyStatus.ABORTED: 3>, 'TRIGGERED': <ApplyStatus.TRIGGERED: 4>}
        def __eq__(self, other: typing.Any) -> bool:
            ...
        def __getstate__(self) -> int:
            ...
        def __hash__(self) -> int:
            ...
        def __index__(self) -> int:
            ...
        def __init__(self, value: int) -> None:
            ...
        def __int__(self) -> int:
            ...
        def __ne__(self, other: typing.Any) -> bool:
            ...
        def __repr__(self) -> str:
            ...
        def __setstate__(self, state: int) -> None:
            ...
        def __str__(self) -> str:
            ...
        @property
        def name(self) -> str:
            ...
        @property
        def value(self) -> int:
            ...
    ABORTED: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.ABORTED: 3>
    ERROR: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.ERROR: 1>
    SUCCESS: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.SUCCESS: 0>
    TRIGGERED: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.TRIGGERED: 4>
    WARNING: typing.ClassVar[Action.ApplyStatus]  # value = <ApplyStatus.WARNING: 2>
    def addParameter(self, arg0: Property) -> None:
        """
        Add a new parameter to the action, using the CamiTK property class. If
        the parameter already exist, it will just change its value.
        
        .. note::
            The action takes ownership of the Property instance.
        
        Returns:
            false if the Qt Meta Object property was added by this method
            (otherwise the property was already defined and true is returned
            if it was successfully updated)
        """
    def getName(self) -> str:
        """
        get the name of the action
        """
    def getOutputComponent(self) -> Component:
        """
        Returns the top-level output Component of this Action, or None if there is no output.
        """
    def getParameterValue(self, arg0: str) -> typing.Any:
        """
        get the parameter QVariant (same as property(const char*)) but check
        if it exists first. If the parameter was not declared using
        addParameter, this methods prints an error message and returns an
        invalid QVariant
        """
    def getProperty(self, arg0: str) -> Property:
        """
        Get a Property given its name
        
        Parameter ``name``:
            the property name
        
        Returns:
            nullptr if the name does not match any property name
        
        See also:
            Property
        """
    def getTargets(self) -> list[Component]:
        """
        the currently selected and valid (regarding the component property)
        components, for which this action is called
        """
    def refreshApplication(self) -> None:
        """
        convenient method to call from the user code to refresh all the
        application This is equivalent to call Application::refresh()
        """
    def saveState(self) -> None:
        """
        Saves the current state of this Action, including its parameters. This will backup the current state of the __dict__ of the python object associated with the action
        """
    def setApplyButtonText(self, arg0: str) -> None:
        """
        modify the "Apply" button text
        """
    def setInputComponent(self, arg0: Component) -> None:
        """
        Assigns the given Component as input to this Action. Note that the Action's widget is also initialized upon this call.
        """
    def setParameterValue(self, arg0: str, arg1: typing.Any) -> bool:
        """
        set the parameter QVariant value (same as setProperty(const char*,
        newValue)) but check if it exists first. If the parameter was not
        declared using addParameter, this methods prints an error message and
        returns false
        """
    def updateWidget(self) -> None:
        """
        Updates the Action's default widget, if any.
        """
class Application:
    """
    The generic/default application. Once this class is instantiated in
    the main, everything is setup. The constructor can take the command
    line arguments. It can also be asked not to load the extensions
    automatically,see Application().
    
    If you do not have a specific MainWindow extension, then the default
    CamiTK MainWindow is used, see setMainWindow().
    
    This class manages all application-level instances, structures and
    all. This explains the number of _static_ methods in this class.
    
    It manages: - the registered/loaded action extensions and all the
    actions - the registered/loaded component extensions and all the
    component instances - the registered/loaded viewer extensions and all
    the viewer instances - the refresh mechanism - the current selection
    (selected components) - the recently opened documents - the
    application language/internationalization settings - the
    opening/closing/saving of components - the main window - the history
    of applied actions (including saving it as a CamitK SCXML document) -
    some application level settings
    """
    @staticmethod
    @typing.overload
    def applyAction(arg0: str) -> Component:
        """
        Applies the action of the given name and returns the top-level output Component created by it if any or None if there is no output component. The given action must require no input component
        """
    @staticmethod
    @typing.overload
    def applyAction(arg0: str, arg1: Component) -> Component:
        """
        Applies the action of the given name that takes the given component as input and returns the top-level output Component created by it if any or None if there is no output component. The given action must require one and only one input component
        """
    @staticmethod
    @typing.overload
    def applyAction(arg0: str, arg1: list[Component]) -> Component:
        """
        Applies the action of the given name that takes the given list of components as input and returns the top-level output Component created by it if any or None if there is no output component. The given action must require a list of input components
        """
    @staticmethod
    def close(arg0: Component, arg1: bool) -> None:
        """
        Close a Component: if it has been changed, ask the user for more
        information, then if everything is ok, delete it.
        
        Parameter ``component``:
            the Component to close.
        
        Parameter ``blockRefresh``:
            do not refresh the main window after closing the component
        
        Returns:
            true if the closing was made, false if the user cancelled the
            operation or a saving problem occurs
        """
    @staticmethod
    def closeAll() -> bool:
        """
        Closes all opened Components, prompting the user to save modified ones.
        This method uses the 'Close All' Action to close all opened Components.
        """
    @staticmethod
    def connectViewerSelectionChanged(viewerName: str, callback: typing.Callable) -> bool:
        """
        Connects a Python callback to a Viewer's selectionChanged() signal by name (if not already connected).
        """
    @staticmethod
    def disconnectViewerSelectionChanged(viewerName: str, callback: typing.Callable) -> bool:
        """
        Disconnects a Python callback from a Viewer's selectionChanged() signal by name (if already connected).
        """
    @staticmethod
    def getAction(arg0: str) -> Action:
        """
        get a registered action given its name
        """
    @staticmethod
    def getActions() -> list[Action]:
        """
        get all the actions registered in the application (note: the returned
        ActionList is guaranteed to be sorted by action name and to contain no
        duplicates)
        """
    @staticmethod
    def getTopLevelComponents() -> list[Component]:
        """
        get the current application wide list of instantiated top-level
        Components. This is the public method (return a const, the top-level
        component list is private and cannot be modified externally).
        """
    @staticmethod
    @typing.overload
    def isAlive(component: Component) -> bool:
        """
        does this Component still exist? (components can be deleted)
        """
    @staticmethod
    @typing.overload
    def isAlive(action: Action) -> bool:
        """
        does this Action still exist? (HotPlugAction can be unloaded)
        """
    @staticmethod
    def open(fileName: str, blockRefresh: bool = False) -> Component:
        """
        load the filename and returns the corresponding top level Component
        (returns nullptr if an error occurs)
        
        .. note::
            this method opens the filename and created the associated TOP
            LEVEL component If you wish to open a subcomponent (not top level
            then), prefer directly calling its public constructor.
        
        Parameter ``fileName``:
            file that contains the component
        
        Parameter ``blockRefresh``:
            do not refresh the main window after closing the component
        """
    @staticmethod
    def save(arg0: Component) -> None:
        """
        save a component to its file (as given by component->getFileName()).
        
        .. note::
            the component's file name has to be set prior to call this method.
        
        This method look for the proper loaded ComponentExtension, and call
        its save(Component*) method
        """
    @staticmethod
    def saveAs(arg0: Component) -> None:
        """
        Saves the given Component by prompting the user for a file name.
        This method uses the 'Save As' Action to save the given Component, which will prompt the user for a file name.
        """
    @staticmethod
    def update3DClippingPlanes() -> None:
        """
        Updates the clipping planes of the default 3D Viewer.
            This might be required when the working space volume changes rapidly, for instance in navigation system where the tracker moves some mesh in real 3D space or for RV application).
        """
class Component(InterfaceProperty, InterfaceNode, InterfaceGeometry, InterfaceBitMap, InterfaceFrame, InterfacePersistence):
    """
    A Component represents something that could be included in the
    explorer view, the interactive 3D viewer, and that could have or not a
    contextual popup menu (open by a right click in the explorer), a
    property dialog (to change some properties) Thus, a Component inherits
    from many abstract classes. A Component can only have one implemented
    representation.
    
    For CAMITK core developers: This class uses the Object Adapter Design
    Pattern (aka delegate pattern) to delegates all InterfaceGeometry and
    InterfaceBitMap to respectively myGeometry:Geometry and
    mySlice:InterfaceBitMap It handles the InterfaceNode without
    delegation. Considering this Design Pattern, Component is the Adaptor
    and Geometry and InterfaceBitMap are the Adaptee classes.
    
    This class has some static member to manage all the currently
    instantiated Components as well as the currently selected Components.
    
    Actions generally use setPointSet() (for InterfaceGeometry) and
    setOriginalVolume (for InterfaceBitMap) to do some data processing and
    directly modify the low-level Vtk data. It is thus very **important**
    to rewrite these methods in your Component subclass to takes the
    actions' modification into account in your low-level data.
    
    Dynamic properties: if your Component defines some dynamic properties,
    you might want to override propertyValueChanged() in order to update
    the internal state of your object when a dynamic property's value has
    been changed.
    
    See also:
        ObjComponent for a good example
    
    It extensively uses Qt Meta-Object system (concepts and
    implementation). see http://doc.qt.nokia.com/latest/metaobjects.html
    """
    def __init__(self, arg0: str, arg1: str) -> None:
        """
        Component constructor for top-level component (please use the other
        constructor for sub-level components). parentComponent is set to
        nullptr (=> isTopLevel() will return true).
        
        Parameter ``file``:
            the file to get the data from
        
        Parameter ``name``:
            the Component name
        
        Parameter ``rep``:
            the representation concretely implemented by this Component
            (default=NO_REPRESENTATION)
        
        Parameter ``createDefaultFrame``:
            Whether the component should create its frame (should be set to
            false only if the frame is created/set in another way)
        """
    def addChild(self, arg0: InterfaceNode) -> None:
        """
        add a child Component (sub item in the hierarchy), and modify the
        child's parent to be equal to this instance
        
        This is to be used with care. The preferred method to add a child
        component is to use the Component's constructor with the parent
        parameter: Component(Component *, const QString &, Representation rep)
        .
        
        See also:
            attachChild()
        """
    def getChildren(self) -> list[Component]:
        """
        get the list of the InterfaceNode children (sub items in the
        hierarchy)
        """
    def getFileName(self) -> str:
        """
        get the file name where the data have to be stored/were stored
        """
    def getFrame(self) -> ...:
        """
        Get the pointer to this object's FrameOfReference. \\note Please use
        TransformationManager::getFrameOfReferenceOwnership(FrameOfReference*)
        """
    def getName(self) -> str:
        """
        get the name to be displayed
        """
    def getParent(self) -> InterfaceNode:
        """
        get the parent Component
        """
    def getPropertyValue(self, arg0: str) -> typing.Any:
        """
        get the property QVariant (same as property(const char*)) but check if
        it exists first. If the property was not declared using addProperty,
        this methods prints an error message and returns an invalid QVariant
        """
    def isSelected(self) -> bool:
        """
        Check if this data component is selected
        """
    def isTopLevel(self) -> bool:
        """
        return true if this component is a top-level component
        """
    def refresh(self) -> None:
        """
        refresh all the viewer that are currently displaying this Component At
        the end the InterfaceNode modification flag is reset.
        """
    def setFrame(self, arg0: ...) -> None:
        """
        Set the FrameOfReference of this object. Note that this methods will
        take ownership of the given frame thanks to the shared_ptr.
        """
    def setFrameFrom(self, arg0: InterfaceFrame) -> None:
        """
        Modify this object's frame using the given object's frame.
        
        .. note::
            you can reimplement this method if you need to manage more than
            this frame of reference (
        
        See also:
            ImageComponent::setFrameFrom())
        """
    def setModified(self, arg0: bool) -> None:
        """
        set the modified flag
        """
    def setName(self, arg0: str) -> None:
        """
        set the name to be displayed
        """
    def setPropertyValue(self, arg0: str, arg1: typing.Any) -> bool:
        """
        set the property QVariant value (same as setProperty(const char*,
        newValue)) but check if it exists first. If the property was not
        declared using addProperty, this methods prints an error message and
        returns false
        """
    def setSelected(self, b: bool, recursive: bool = True) -> None:
        """
        Update the selection flag.
        
        Parameter ``b``:
            the value of the flag (true means "is selected")
        
        Parameter ``recursive``:
            if true (default), also updates the children Component selection
            flags.
        """
class ComponentExtension:
    """
    This class describes what is a generic Component extension. To add a
    ComponentExtension to CamiTK core, write a new class that inherits
    from this class.
    
    There are two types of component extension: the classical one manages
    (mime type) file extension, the other one manages all files in a given
    directory (e.g. Dicom images). For the latter you have to redefine
    hasDataDirectory().
    
    The following methods HAVE to be redefined in your subclass: - getName
    - getDescription - getFileExtensions - open
    
    The following methods can be redefined: - save: saving from a
    Component to one of the managed format - hasDataDirectory: for
    directory type extension
    """
    def __init__(self) -> None:
        """
        protected constructor, \\note never directly instantiate a
        ComponentExtension, use loadExtension(...) instead!
        """
    def getDescription(self) -> str:
        """
        get the plugin description
        """
    def getFileExtensions(self) -> list[str]:
        """
        get the list of managed extensions (each file with an extension in the
        list can be loaded by this Component)
        """
    def getName(self) -> str:
        """
        @name ComponentExtension plugin interface methods @{ get the plugin
        name
        """
    def hasDataDirectory(self) -> bool:
        """
        return true if this component manages directory instead of individual
        files (e.g. Dicom series are stored in directories, not files)
        """
    def open(self, arg0: str) -> Component:
        """
        get a new instance from data stored in a file (this is the most
        important method to redefine in your subclass)
        
        This method may throw an AbortException if a problem occurs.
        
        .. note::
            The parameter is a filename with an absolute path (from Qt's
            QFileInfo::absoluteFilePath method): On Unix (including Mac OS)
            this will always begin with the root, '/', directory. On Windows
            this will always begin 'D:/' where D is a drive letter, except for
            network shares that are not mapped to a drive letter, in which
            case the path will begin '//sharename/'
        """
    def save(self, arg0: Component) -> bool:
        """
        save a given Component (does not have to be top-level) into one of the
        currently managed format (check the component
        QFileInfo(component->getFileName()).completeSuffix().
        
        Redefine this method to extract all needed data/information from the
        Geometry or BitMap representation in order to export a given component
        to one of the file extension managed by this component extension.
        
        .. note::
            this will enable to export to one of the managed filename
            extension at the CamiTK level (i.e. if you write this method, any
            compatible component can be saved to your managed format!
        
        .. note::
            this method is called by CamiTK only if the filename extension is
            managed by this component extension. There should be no need to
            check it in the method.
        
        The default behaviour is a "not implemented yet" message box.
        
        Returns:
            false if the operation was not performed properly or not performed
            at all.
        """
class Core:
    @staticmethod
    def getConfig() -> str:
        ...
    @staticmethod
    def getPaths() -> str:
        ...
    @staticmethod
    def getTestDataDir() -> str:
        ...
    @staticmethod
    def shortVersion() -> str:
        ...
    @staticmethod
    def version() -> str:
        ...
class ExtensionManager:
    """
    This class is used to manage all plugins loaded by the application.
    
    The current version is able to load dynamic library for -
    ComponentExtension - ActionExtension
    
    This class is a contained for all the loaded extension. It contains
    only static members.
    """
    @staticmethod
    def getDataDirectoryExtNames() -> list[str]:
        """
        get the list of all the name of the registered Component data
        directory
        """
    @staticmethod
    def getFileExtensions() -> list[str]:
        """
        get the list of all the suffixes managed by registered component
        extensions (all possible file suffix)
        """
    @staticmethod
    def registerNewComponentExtension(arg0: ..., arg1: str) -> bool:
        """
        Register the given ComponentExtension. If the given ComponentExtension
        is managing file extensions that are already registered, it will not
        be registered, and this method will return false and a info message
        will be printed with more information.
        
        Parameter ``ce``:
            valid ComponentExtension pointer (loaded from a shared library
            plugin (.dll/.so/.dylib) or instantiated programmatically)
        
        Parameter ``filename``:
            (optional) if the extension was loaded from a shared library
            (.dll/.so/.dylib), path to this file
        
        Returns:
            true if the extension was registered without error
        """
class FrameOfReference:
    """
    FrameOfReference is only a label for an abstract coordinate system. It
    is used as origins and destinations of transformations.
    
    There is no information stored in a FrameOfReference except - an ID, -
    a name and description - a number of dimensions (between 1 and 5,
    default is 3) and units ("mm" for the first 3 dimensions) - a
    AnatomicalOrientation that can describe whether there is a known
    anatomical orientation associated to each axis (
    
    See also:
        AnatomicalOrientation) - a color (used in the transformation graph
        visualisation)
    
    All constructors are protected, use TransformationManager to create a
    new instance.
    
    See also:
        Transformation, TransformationManager, AnatomicalOrientation
    """
    def getName(self) -> str:
        """
        Get the FrameOfReference name
        """
    def getUuid(self) -> QUuid:
        """
        Get the unique identifier of the Frame
        """
class HotPlugAction(Action):
    """
    An Action that can be created on the fly
    """
class ImageComponent(Component):
    """
    The manager of the Image Volume data. An image volume data has no
    concrete 3D representation, as its representation is provided by its
    sub-components (axial, sagittal, coronal and arbitrary slices as well
    as volume rendering).
    
    It builds a complete/ready-to-use VTK pipeline:
    
    See also:
        Slice
    
    .. note::
        You can use the following properties to change the visualization
        of an ImageComponent and children components: - "Display Image in
        3D Viewer" type boolean, controls what is displayed in the default
        3D viewer
    
    Every time a property is changed using setProperty(QString
    propertyName, QVariant value), the ImageComponent will automatically
    update, thanks to the propertyValueChanged(..) method.
    """
    def __init__(self, arg0: str, arg1: str) -> None:
        """
        Creates an ImageComponent from a file. This method is called from a
        ComponentExtension derived class that support the given file format.
        
        This method may throw an AbortException if a problem occurs.
        
        Parameter ``file``:
            the complete path to the image file
        
        Parameter ``name``:
            name to be given to the Component (this name will appear in the
            explorer)
        """
    def clone(self) -> ImageComponent:
        """
        Clone this original image. Note that the image data is not copied, only referenced from the clone, and that the frame of the clone is set to the original image component's frame.
        """
    def getArbitrarySliceFrame(self) -> ...:
        """
        Returns the FrameOfReference used for the arbitrary slice.
        """
    def getDataFrame(self) -> ...:
        """
        get the data FrameOfReference (i.e., the vtkImageData frame)
        """
    def getDimensions(self) -> tuple:
        """
        Returns the image dimensions as a tuple of 3 integers (dimX, dimY, dimZ).
        """
    def getImageDataAsNumpy(self) -> numpy.ndarray:
        """
        Returns the image data as a numpy ndarray.
        """
    def getLastPixelPicked(self) -> tuple:
        """
        Get the last pixel picked using CTRL + LEFT/RIGHT CLICK in voxel index
        (i, j, k) indicates the voxel index (no notion of voxel size)
        """
    def getLastPointPickedDataFrame(self) -> tuple:
        """
        Get the last point picked using CTRL + LEFT/RIGHT CLICK in the data
        frame coordinates (this takes into account voxel size)
        """
    def getLastPointPickedWorldFrame(self) -> tuple:
        """
        Get Get the last point picked using CTRL + LEFT/RIGHT CLICK in the
        world coordinates This takes into account voxel size and image origin
        (and possible image rigid transforms).
        """
    def getSpacing(self) -> numpy.ndarray:
        """
        Returns the image spacing as a tuple of 3 floats (spacingX, spacingY, spacingZ).
        """
    def replaceImageData(self, arg0: numpy.ndarray) -> None:
        """
        Replaces the image data with the given numpy ndarray.
        """
class InterfaceBitMap:
    """
    This class describes what are the methods to implement for a BitMap.
    An InterfaceBitMap is a kind of simplifier/wrapper for vtkImageData.
    
    This class defines an "interface" (in the OOP/java meaning of the
    term). See the introduction of GoF: "Program to an interface, not an
    implementation." To see what Erich Gamma has to say about it:
    http://www.artima.com/lejava/articles/designprinciplesP.html To see
    what Bjarne Stroustrup has to say about it:
    http://www.artima.com/intv/modern.html
    
    See also:
        Slice
    """
class InterfaceFrame:
    """
    This class describes the methods to implement in order to manage a
    Component position in space.
    
    Each Component has a frame of reference which is used to define its
    relation to other objects. You can define new frames and
    transformations between frames as required, but all FrameOfReference
    and Transformation objects must be managed by the
    TransformationManager.
    
    See also:
        TransformationManager
    """
class InterfaceGeometry:
    """
    This class describes what are the methods to implement for a Geometry
    (rendering parameters, input/output, filters, picking parameters...)
    
    An InterfaceGeometry is a kind of simplifier/wrapper for vtkPointSet.
    
    This class defines an "interface" (in the OOP/java meaning of the
    term). See the introduction of GoF: "Program to an interface, not an
    implementation." To see what Erich Gamma has to say about it:
    http://www.artima.com/lejava/articles/designprinciplesP.html To see
    what Bjarne Stroustrup has to say about it:
    http://www.artima.com/intv/modern.html
    
    See also:
        Geometry
    """
    class RenderingMode:
        """
        @enum RenderingMode (and QFlags RenderingModes) handle actor rendering
        options (render this InterfaceGeometry as a surface, a wireframe and
        set of points).
        
        Members:
        
          NoRenderingMode
        
          Surface
        
          Wireframe
        
          Points
        """
        NoRenderingMode: typing.ClassVar[InterfaceGeometry.RenderingMode]  # value = <RenderingMode.NoRenderingMode: 0>
        Points: typing.ClassVar[InterfaceGeometry.RenderingMode]  # value = <RenderingMode.Points: 4>
        Surface: typing.ClassVar[InterfaceGeometry.RenderingMode]  # value = <RenderingMode.Surface: 1>
        Wireframe: typing.ClassVar[InterfaceGeometry.RenderingMode]  # value = <RenderingMode.Wireframe: 2>
        __members__: typing.ClassVar[dict[str, InterfaceGeometry.RenderingMode]]  # value = {'NoRenderingMode': <RenderingMode.NoRenderingMode: 0>, 'Surface': <RenderingMode.Surface: 1>, 'Wireframe': <RenderingMode.Wireframe: 2>, 'Points': <RenderingMode.Points: 4>}
        def __and__(self, other: typing.Any) -> typing.Any:
            ...
        def __eq__(self, other: typing.Any) -> bool:
            ...
        def __ge__(self, other: typing.Any) -> bool:
            ...
        def __getstate__(self) -> int:
            ...
        def __gt__(self, other: typing.Any) -> bool:
            ...
        def __hash__(self) -> int:
            ...
        def __index__(self) -> int:
            ...
        def __init__(self, value: int) -> None:
            ...
        def __int__(self) -> int:
            ...
        def __invert__(self) -> typing.Any:
            ...
        def __le__(self, other: typing.Any) -> bool:
            ...
        def __lt__(self, other: typing.Any) -> bool:
            ...
        def __ne__(self, other: typing.Any) -> bool:
            ...
        def __or__(self, other: typing.Any) -> typing.Any:
            ...
        def __rand__(self, other: typing.Any) -> typing.Any:
            ...
        def __repr__(self) -> str:
            ...
        def __ror__(self, other: typing.Any) -> typing.Any:
            ...
        def __rxor__(self, other: typing.Any) -> typing.Any:
            ...
        def __setstate__(self, state: int) -> None:
            ...
        def __str__(self) -> str:
            ...
        def __xor__(self, other: typing.Any) -> typing.Any:
            ...
        @property
        def name(self) -> str:
            ...
        @property
        def value(self) -> int:
            ...
    NoRenderingMode: typing.ClassVar[InterfaceGeometry.RenderingMode]  # value = <RenderingMode.NoRenderingMode: 0>
    Points: typing.ClassVar[InterfaceGeometry.RenderingMode]  # value = <RenderingMode.Points: 4>
    Surface: typing.ClassVar[InterfaceGeometry.RenderingMode]  # value = <RenderingMode.Surface: 1>
    Wireframe: typing.ClassVar[InterfaceGeometry.RenderingMode]  # value = <RenderingMode.Wireframe: 2>
class InterfaceNode:
    """
    This class describe what are the methods to implement for a
    hierarchical tree node.
    
    An InterfaceNode can only have one parent, even if it is a child of
    more than one InterfaceNodes.
    
    Consequence: an InterfaceNode can be present many times in the
    hierarchy, but can only depends from one parent. To add an
    InterfaceNode as a child and change its parent to this use addChild().
    To add an InterfaceNode as a child without modifying its parent, use
    attachChild().
    
    This class defines an "interface" (in the OOP/java meaning of the
    term). See the introduction of GoF: "Program to an interface, not an
    implementation." To see what Erich Gamma has to say about it:
    http://www.artima.com/lejava/articles/designprinciplesP.html To see
    what Bjarne Stroustrup has to say about it:
    http://www.artima.com/intv/modern.html
    """
class InterfacePersistence:
    """
    Interface for all objects that should be serialized by the
    PersistenceManager
    """
class InterfaceProperty:
    """
    This class describes what are the methods to implement in order to
    manage dynamic properties. InterfaceProperty is one of the interfaces
    implemented by the camitk::Component "Component" class.
    """
class Log:
    class LogLevel:
        """
        Members:
        
          NONE
        
          ERROR
        
          WARNING
        
          INFO
        
          TRACE
        """
        ERROR: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.ERROR: 1>
        INFO: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.INFO: 3>
        NONE: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.NONE: 0>
        TRACE: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.TRACE: 4>
        WARNING: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.WARNING: 2>
        __members__: typing.ClassVar[dict[str, Log.LogLevel]]  # value = {'NONE': <LogLevel.NONE: 0>, 'ERROR': <LogLevel.ERROR: 1>, 'WARNING': <LogLevel.WARNING: 2>, 'INFO': <LogLevel.INFO: 3>, 'TRACE': <LogLevel.TRACE: 4>}
        def __eq__(self, other: typing.Any) -> bool:
            ...
        def __getstate__(self) -> int:
            ...
        def __hash__(self) -> int:
            ...
        def __index__(self) -> int:
            ...
        def __init__(self, value: int) -> None:
            ...
        def __int__(self) -> int:
            ...
        def __ne__(self, other: typing.Any) -> bool:
            ...
        def __repr__(self) -> str:
            ...
        def __setstate__(self, state: int) -> None:
            ...
        def __str__(self) -> str:
            ...
        @property
        def name(self) -> str:
            ...
        @property
        def value(self) -> int:
            ...
    ERROR: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.ERROR: 1>
    INFO: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.INFO: 3>
    NONE: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.NONE: 0>
    TRACE: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.TRACE: 4>
    WARNING: typing.ClassVar[Log.LogLevel]  # value = <LogLevel.WARNING: 2>
    def setDebugInformation(self: bool) -> None:
        ...
    def setLogLevel(self: Log.LogLevel) -> None:
        ...
    def setMessageBoxLevel(self: Log.LogLevel) -> None:
        ...
    def setTimeStampInformation(self: bool) -> None:
        ...
class MeshComponent(Component):
    """
    Basic component to manage any kind of mesh.
    """
    class FieldType:
        """
        @enum FieldType Data fields can be applied to one of this
        
        Members:
        
          POINTS
        
          CELLS
        
          MESH
        """
        CELLS: typing.ClassVar[MeshComponent.FieldType]  # value = <FieldType.CELLS: 2>
        MESH: typing.ClassVar[MeshComponent.FieldType]  # value = <FieldType.MESH: 4>
        POINTS: typing.ClassVar[MeshComponent.FieldType]  # value = <FieldType.POINTS: 1>
        __members__: typing.ClassVar[dict[str, MeshComponent.FieldType]]  # value = {'POINTS': <FieldType.POINTS: 1>, 'CELLS': <FieldType.CELLS: 2>, 'MESH': <FieldType.MESH: 4>}
        def __eq__(self, other: typing.Any) -> bool:
            ...
        def __getstate__(self) -> int:
            ...
        def __hash__(self) -> int:
            ...
        def __index__(self) -> int:
            ...
        def __init__(self, value: int) -> None:
            ...
        def __int__(self) -> int:
            ...
        def __ne__(self, other: typing.Any) -> bool:
            ...
        def __repr__(self) -> str:
            ...
        def __setstate__(self, state: int) -> None:
            ...
        def __str__(self) -> str:
            ...
        @property
        def name(self) -> str:
            ...
        @property
        def value(self) -> int:
            ...
    CELLS: typing.ClassVar[MeshComponent.FieldType]  # value = <FieldType.CELLS: 2>
    MESH: typing.ClassVar[MeshComponent.FieldType]  # value = <FieldType.MESH: 4>
    POINTS: typing.ClassVar[MeshComponent.FieldType]  # value = <FieldType.POINTS: 1>
    def addCellData(self, arg0: str, arg1: numpy.ndarray) -> None:
        """
        Adds a cell data array using the given numpy ndarray.
        """
    def addDataArray(self, arg0: MeshComponent.FieldType, arg1: str, arg2: numpy.ndarray) -> None:
        """
        Add a data array using the given a numpy ndarray.
        """
    def addPointData(self, arg0: str, arg1: numpy.ndarray) -> None:
        """
        Adds a point data array using the given numpy ndarray.
        """
    def clone(self) -> MeshComponent:
        """
        Clone this original mesh. Note that the point set is not copied, only referenced from the clone, and that the frame of the clone is set to the original mesh component's frame.
        """
    def getColor(self) -> tuple[float, ...] | list[float]:
        """
        Get the color of given representation modes in the second parameter.
        
        Parameter ``color``:
            the 4-sized double tab of color (r,g,b,a) of the actor.
        
        Parameter ``ignoreEnhancedModes``:
            Return the color without considering the changes that may be due
            to enhanced modes (highlight) @warning color must points a 4
            double-sized tab minimum.
        """
    def getDataArray(self, arg0: MeshComponent.FieldType, arg1: int) -> numpy.ndarray:
        """
        Get the data array of specified field type and index as a numpy ndarray.
        """
    def getNumberOfDataArray(self, arg0: int) -> int:
        """
        Get the number of data arrays of a given type without taking the
        specific representation into account.
        
        This method does not take into account: - the field arrays - the
        specific representation of 3D data (i.e., representation of 3D data as
        norm or component#i values)
        
        Parameter ``fieldFlag``:
            is a FieldType or a combinaison of field types.
        
        Returns:
            the number of arrays corresponding to the field flag
        """
    def getPickedCellId(self) -> int:
        """
        get the last pick point id,
        
        Returns:
            -1 if no point where picked
        """
    def getPickedPointId(self) -> int:
        """
        get the last pick point id,
        
        Returns:
            -1 if no point where picked
        """
    def getPickedPointPosition(self) -> tuple:
        """
        Returns the position of the picked point as a tuple of 3 floats (x, y, z) in this mesh component frame. If no point is picked, returns (0.0, 0.0, 0.0).
        """
    def getPointSetAsNumpy(self) -> numpy.ndarray:
        """
        Returns the point set as a numpy ndarray of shape (N, 3) where N is the number of points.
        """
    def removeDataArray(self, arg0: MeshComponent.FieldType, arg1: str) -> None:
        """
        Remove a data array.
        
        Parameter ``fieldType``:
            field type
        
        Parameter ``name``:
            name of the array to remove
        """
    def replacePointSet(self, arg0: numpy.ndarray) -> None:
        """
        Replaces the point set with the given numpy ndarray of shape (N, 3) where N is the number of points. If there is no Cell/polygons, this will be interpreted as a point cloud (it will create one cell containing all the points).
        """
    def setColor(self, arg0: tuple[float, ...] | list[float]) -> None:
        """
        Set the color of given representation modes.
        
        Parameter ``color``:
            the 4-sized double tab of color (r,g,b,a) of the actor. @warning
            color must points a 4 double-sized tab minimum.
        """
    def setDataRepresentationOff(self, dataType: int = 7, blockRefresh: bool = False) -> None:
        """
        hide all the data representation of a given data type (hide all by
        default) By default this->refresh() is called unless blockRefresh is
        set to true
        """
    def setLinesAsTubes(self, isTubes: bool = True, radiusFromLength: bool = True, radiusFactor: float = 0.025, numberOfSides: int = 5) -> None:
        """
        Set the lines as tubes (**works only for vtkDataSet representation
        that contains lines**)
        
        Parameter ``isTubes``:
            activate tube representation of lines
        
        Parameter ``radiusFromLength``:
            radius of tubes is computed as a proportion of line length
        
        Parameter ``radiusFactor``:
            radius of tubes will be : radiusFactor*lineLength if
            radiusFromLength is true, radiusFactor if it is false
        
        Parameter ``numberOfSides``:
            Number of sides of the tubes
        """
    def setRenderingModes(self, arg0: int) -> None:
        """
        @name rendering mode settings @{ Set the actor associated to a
        rendering mode visible or not.
        """
class Property:
    """
    This class describes a property that can be used in components and
    actions or any class that needs to be passed to ObjectController. A
    property has a type, a description (to be displayed for example as a
    tooltip, can be rich-text, see https://doc.qt.io/qt-5/richtext-html-
    subset.html for supported html tags), a value, a unit of measurement
    (SI unit if possible), and some specific attributes (that depends on
    the type, e.g. minimal and maximal values, single steps, number of
    decimals, regular expression...). An enum type can also be used for
    properties.
    
    Properties can be grouped in subgroups, see Property::setGroupName().
    
    Basically this is a way to overcome the Qt Meta Object properties
    limitations. A camitk::Property enriches a Qt Meta Object property (a
    very simplified Decorator Design Pattern).
    
    Using camitk::Property instead of directly using Qt Meta Object
    property helps to build a better interactive GUI (in the property
    explorer for components and in the ActionWidget for actions). Note
    that a camitk::Property is represented as a regular Qt Meta Object
    property as well (the value of the camitk::Property is in fact stored
    by the Qt Meta Object property)
    
    Here are some examples to get started with:
    
    ```
    Demonstrates how rich text can be used in description
    addParameter(new Property("Bool Prop", false, "This a <i>normal</i> bool property.<br/>**Note:** Rich text description!<br/>See also: <a href=\\"http://camitk.imag.fr\\">CamiTK web page</a>", ""));
    
     beware: the action takes ownership of the Property pointer
     This means that the line above does not generate memory leak.
    
     Demonstrates how properties can be set as read-only
     Demonstrates how properties can be grouped.
     Here all read-only properties are assemble in the same eponymic group
    Property *readOnlyBool = new Property("Read Only Bool", true, "This a read-only boolean", "");
    readOnlyBool->setReadOnly(true);
    readOnlyBool->setGroupName("Read Only Properties");
    addParameter(readOnlyBool);
    
     beware: the action takes ownership of the Property pointer
     This means that you should NOT delete readOnlyBool in the action destructor
    
     Demonstrates how integer properties can be bounded
    Property *boundedInt = new Property("Bounded Int", 12, "An integer bounded between 0 and 20", "");
    boundedInt->setAttribute("minimum", 0);
    boundedInt->setAttribute("maximum", 20);
    boundedInt->setGroupName("Numeric Properties");
    addParameter(boundedInt);
    
     Demonstrates how double properties can be half-bounded
    Property *doubleWithMax = new Property("Double With Max", -10.0, "A double with a max value of -4.2", "");
    doubleWithMax->setAttribute("maximum", -4.2);
    doubleWithMax->setGroupName("Numeric Properties");
    addParameter(doubleWithMax);
    
    Property *intWithSingleStep = new Property("Int With Single Step", -10, "An integer with a single step of <i>5</i>", "");
    intWithSingleStep->setAttribute("singleStep", 5);
    intWithSingleStep->setGroupName("Numeric Properties");
    addParameter(intWithSingleStep);
    
    Property *doubleWithStepAndDecimal = new Property("Double With Single Step And Precision", 3.14159, "A double with 5 decimals and a single step of 1.10<sup>-5</sup>", "");
    doubleWithStepAndDecimal->setAttribute("singleStep", 10e-6);
    doubleWithStepAndDecimal->setAttribute("decimals", 5);
    doubleWithStepAndDecimal->setGroupName("Numeric Properties");
    addParameter(doubleWithStepAndDecimal);
    
    Property *intWithDecimal = new Property("Int With Precision", 4, "An integer with a precision set to 5 decimals: this should not affect it.", "");
    intWithDecimal->setAttribute("decimals", 5);
    intWithDecimal->setGroupName("Numeric Properties");
    addParameter(intWithDecimal);
    
    Property *readOnlyQVector3D = new Property("Read Only QVector3D", QVector3D(-4.0, 2.0, 0.1), "A read-only QVector3D", "");
    readOnlyQVector3D->setReadOnly(true);
    readOnlyQVector3D->setGroupName("Read Only Properties");
    addParameter(readOnlyQVector3D);
    
    Property *stringWithRegExp = new Property("QString Constrained by RegExp", QString("loweronly"), "A QString constrained to lowercase characters only (no separators, numbers...)", "");
    stringWithRegExp->setAttribute("regExp", QRegularExpression("[a-z]*"));
    addParameter(stringWithRegExp);
    
    Property *constrainedQRect = new Property("Constrained QRect", QRect(10,10,20,20), "A QRect constrained to (0,0,50,50)", "");
    constrainedQRect->setAttribute("constraint", QRect(0,0,50,50));
    addParameter(constrainedQRect);
    
    Property *constrainedQVector3D = new Property("Constrained QVector3D", QVector3D(1.1, 2.2, 3.3), "A constrained QVector3D (not yet implemented)", "");
    constrainedQVector3D->setAttribute("constraint", QVector3D(10.0, 10.0, 10.0));
    addParameter(constrainedQVector3D);
    ```
    
    .. note::
        To create a new Property, prefer using Property. To check if a
        Property has been added to your Component / Action, use either
        Component::getProperty() or Action::getProperty() methods. To
        modify an existing Property's value, check if it exists: - if not,
        create a new instance of Property - if yes, directly modify its
        value by using QObject::setProperty() method.e
    
    The GUI interaction is automatically build and managed by the class
    ObjectController.
    
    An example for adding properties to an action can be seen in
    tutorials/actions/properties. More specifically see the
    EnumPropertyExample action to learn about how to use enum properties.
    
    The class PropComponent and PropAction in the tutorials demonstrates
    how to use camitk::Property instead of Qt Meta Object Property.
    
    The available property types are:
    
    Property Type | Property Type Id ------------- | ----------------- int
    | QVariant::Int double | QVariant::Double bool | QVariant::Bool
    QString | QVariant::String QVector3D | QVariant::QVector3D QColor |
    QVariant::Color QDate | QVariant::Date QTime | QVariant::Time QChar |
    QVariant::Char QDateTime | QVariant::DateTime QPoint | QVariant::Point
    QPointF | QVariant::PointF QKeySequence | QVariant::KeySequence
    QLocale | QVariant::Locale QSize | QVariant::Size QSizeF |
    QVariant::SizeF QRect | QVariant::Rect QRectF | QVariant::RectF
    QSizePolicy | QVariant::SizePolicy QFont | QVariant::Font QCursor |
    QVariant::Cursor enum | enumTypeId() flag | flagTypeId() group |
    groupTypeId()
    
    Possible attributes depends on the property type, mostly (see also
    QtVariantPropertyManager API doc): Property Type | Attribute Name |
    Attribute Type ------------- | :------------: | :------------: ``int``
    | minimum | QVariant::Int ``int`` | maximum | QVariant::Int ``int`` |
    singleStep | QVariant::Int ``double`` | minimum | QVariant::Double
    ``double`` | maximum | QVariant::Double ``double`` | singleStep |
    QVariant::Double ``double`` | decimals | QVariant::Int QString |
    regExp | QVariant::RegExp QDate | minimum | QVariant::Date QDate |
    maximum | QVariant::Date QPointF | decimals | QVariant::Int QSize |
    minimum | QVariant::Size QSize | maximum | QVariant::Size QSizeF |
    minimum | QVariant::SizeF QSizeF | maximum | QVariant::SizeF QSizeF |
    decimals | QVariant::Int QRect | constraint | QVariant::Rect QRectF |
    constraint | QVariant::RectF QRectF | decimals | QVariant::Int
    ``enum`` | enumNames | QVariant::StringList (note that this can be
    build automatically) ``flag`` | flagNames (NOT IMPLEMENTED YET) |
    QVariant::StringList
    
    .. note::
        Anywhere in your code use the property(..).toInt() method to get
        the classical enum value of the property, and use
        Property::getEnumValueAsString() to get the enum value as a
        string. If you declared your enum using Q_ENUM (Qt>=5.5), you can
        also use directly QMetaEnum::fromType to retrieve the enum value
        as strings (see below).
    
    .. note::
        If your property is an action parameter, it is safer to use the
        dedicated methods getParameterValue(..), setParameterValue(..),
        getParameterValueAsString(..) as they will first check that the
        given parameter name is a declared parameter. For component
        properties, it is safer to use the dedicated methods
        getPropertyValue(..) and setPropertyValue(..) as they will also
        first check that the given property name is a declared property.
    
    .. note::
        For enums, you need to do few things in the C++ class that has a
        enum typed property: - add Q_underscore_OBJECT macro in your class
        declaration - either setup a new enum (option 1) or just fill in
        strings in the enum names (option 2)
    
    For option 1, you need - add the enum type in your class declaration -
    register your enum name using the Q_ENUM macro in your class
    declaration - register the enum type name to the property using the
    Property::setEnumTypeName (see example below)
    
    For option 2 (recommended), just - create a QStringList with the GUI
    strings - use the Property::setAttribute("enumNames", yourQStringList)
    
    .. note::
        Using option 2 is recommended as it will allow you to dynamically
        update the enum names at any time (for instance if you want to
        select a component, you can update the enum names using the
        currently opened components).
    
    You can change the enum value names in the GUI using the "enumNames"
    attributes. There is also a way to automatically build nicer enumNames
    (see below).
    
    Enum icons might be set using Property::setEnumIcons.
    
    For instance in the header:
    
    ```
    class MyAction : public camitk::Action {
     Really needed! (replace ‗ by _ in your code if you copy-paste this snippet)
    Q‗OBJECT
    
    -- option 1
     declare the C++ enum
    enum MyEnum {
    PossibleValue1,
    PossibleValue2
    };
     register the enum (Qt >= 5.5)
    Q_ENUM(MyEnum)
    
    -- option 2 (recommended)
     -> nothing to declare in the header
    ...
    };
    ```
    
    And then in the code:
    
    ```
    MyAction::MyAction(ActionExtension * extension) : Action(extension) {
    ...
    -- option 1
     build the dynamic prop based on the enumeration
    Property *enumProp = new Property("My Enumeration", MyAction::PossibleValue2, "Enumeration support example","");
     register the enum type name for automatically manage the enum as a popup list
    enumProp->setEnumTypeName("MyEnum",this);
     The Property class automatically build the enum names presented to the user in the GUI
     (it will changed the enum literals to get a cleaner look, e.g. PossibleValue1 becomes "Possible Value 1")
    
     OR
    
    -- option 2 (recommended)
     build the dynamic prop based on a custom string list
    Property *enumProp = new Property("My Enumeration", 0 /-* index of the initial value in the string list *-/, "Enumeration support example","");
     Set the enum names of your choice, using the enumNames property:
    enumProp->setEnumTypeName("MyEnum");
     add strings to populate the GUI
    QStringList enumValues;
    enumValues << "Possible Value #1" << "Possible Value #2";
    enumProp->setAttribute("enumNames", enumValues);
    
    -- after either option 1 or 2: register the new prop as an action parameter
    addParameter(enumProp);
    }
    
    ...
    
    -- option 1 usage
     option 1.1: get the value as classical C++ enum
    MyEnum enumPropCurrentValue = (MyEnum) getParameterValue("My Enumeration").toInt();
    
     option 1.2: get the value as a QString (either "PossibleValue1" or "PossibleValue2", beware: this is different from the GUI names), you need the enumProp pointer
    QString enumPropAsString = enumProp->getEnumValueAsString(this);
    
     option 1.3: using the Q_ENUM declaration in the header, get the value using Qt meta object
    QMetaEnum metaEnum = QMetaEnum::fromType<EnumerationExample>();
    QString enumPropAsStringDirect = metaEnum.valueToKey(enumPropCurrentValue);
    
    -- option 2 usage (recommended)
    QString QString enumPropAsString = enumValues.value(getParameterValue("My Enumeration").toInt()
    ```
    
    .. note::
        This is not exactly a decorator design pattern, as the Property
        class is not abstract. The Qt Meta Object is still held by the
        QtObject inherited class (e.g. Component or Action). The
        camitk::Property class adds description, readOnly status and
        specific attributes to a QObject dynamic property.
    """
    @staticmethod
    def setEnumTypeName(*args, **kwargs) -> None:
        ...
    def __init__(self, name: str, value: typing.Any, description: str, unit: str) -> None:
        """
        Constructor. The variant parameters also allows you to initialize the
        value of the property. By default a Property is enabled and editable
        (i.e. by default it is not read-only)
        
        Parameter ``name``:
            property name (unique identifier of your class property
        
        Parameter ``variant``:
            specify the property type (QVariant) and initial value
        
        Parameter ``description``:
            a sentence or two to describe the property (and its unit if any),
            can be Rich Text
        
        Parameter ``unit``:
            a unit of measurement (in SI unit), use symbols from
            https://en.wikipedia.org/wiki/SI_base_unit or
            https://en.wikipedia.org/wiki/SI_derived_unit when possible
        """
    def getAttribute(self, arg0: str) -> typing.Any:
        ...
    def getDescription(self) -> str:
        ...
    def getName(self) -> str:
        ...
    def getReadOnly(self) -> bool:
        ...
    def getUnit(self) -> str:
        ...
    def setAttribute(self, attribute: str, value: typing.Any) -> None:
        ...
    def setReadOnly(self, arg0: bool) -> None:
        ...
class PythonHotPlugAction(HotPlugAction):
    """
    An Action that is implemented using a Python CamiTK script.
    """
class Transformation:
    """
    Transformation represents a geometrical transformation between two
    FrameOfReferences
    
    It supports linear and non-linear transforms stored in a vtkTransform
    (linear) or any vtkAbstractTransform (non-linear)
    
    It has a direction (from a FrameOfReference to another
    FrameOfReference)
    
    Its constructor is private as Transformation objects must only be
    created through TransformationManager::getTransformationManager()
    (although it is possible to instantiate your own TransformationManager
    if you know what you're doing!)
    
    .. warning::
        Transformation are instantiated/stored/managed/destroyed by
        TransformationManager::getTransformationManager(), therefore you
        should not keep a pointer to any Transformation, just call
        TransformationManager::getTransformationOwnership(..) when you
        need to access it. This guarantees the coherence of the complete
        reference system and avoid dangling pointers and memory leaks.
    
    ```
    {.cpp}
    ...
    FrameOfReference* from = TransformationManager::addFrameOfReference("Source Frame");
    FrameOfReference* to = TransformationManager::addFrameOfReference("Destination Frame");
    Transformation* t = TransformationManager::addTransformation(from, to);
    ...
    t->setMatrix(...);
     note: t MUST not be a member
     call TransformationManager::getTransformationOwnership(from, to) to access it later on
    ```
    
    See also:
        TransformationManager
    """
    def getFrom(self) -> FrameOfReference:
        """
        Get the FrameOfReference the Transformation starts from (origin)
        """
    def getName(self) -> str:
        """
        Get the name of the Transformation
        """
    def getTo(self) -> FrameOfReference:
        """
        Get the FrameOfReference that the Transformation goes to (destination)
        """
    def getTransform(self) -> numpy.ndarray:
        """
        Get the internal vtkTransform (linear transformation) or a nullptr
        
        Note: this method should return a vtkSmartPointer to a const
        vtkTransform Unfortunately, at some stage in some part of your VTK
        pipeline, you might need a non-const vtkTransform.
        
        .. warning::
            You should only use this method to send the vtkTransform to a vtk
            method. \\warning **NEVER** use this method to modify the content
            of the matrix directly, as it might generate inconsistencies in
            the transformation management. If you need to change the values
            you **MUST** use TransformationManager::updateTransformation(..)
        """
class TransformationManager:
    """
    TransformationManager manages frames of reference and transformations
    for a CamiTK Application
    
    This class is the entry point to using FrameOfReference and
    Transformation system.
    
    Every Component that is displayable contains data which are located in
    space using coordinates. But two Components may not use the same
    origin in space, or the same axes.
    
    To manage that, the notion of Frame specifies an origin and axes, this
    is modeled by camitk::FrameOfReference. Each component has a
    FrameOfReference accessed by Component::getFrame()
    
    Two Components may share a common Frame, for example two meshes of two
    organs computed from the same image. In this case both components'
    getFrame() should return the same FrameOfReference.
    
    TransformationManager stores and manages all the FrameOfReference
    objects used in a CamiTK Application.
    
    When you need to display two Components, or to apply an Action that
    uses multiple Components, it is necessary to be able to transform the
    coordinates of one Component's data to another.
    
    These geometrical transformations are stored in the
    camitk::Transformation class. A Transformation stores the frame of
    origin, the frame of destination and the geometrical transformation
    itself. Currently it supports linear transformations (represented in a
    4x4 homogeneous matrices).
    
    All Transformation objects are also stored and managed in the
    TransformationManager. The TransformationManager provides and manages
    a specific and unique "world frame". This is the frame used by VTK and
    the default for 3D viewers. Having a world frame simplifies the usage
    of frames.
    
    Alongside Component, Viewers also have a FrameOfReference, which
    determines the "point of view" they are using for the visualization.
    More precisely, it is used to set the camera and orient the vtkActors.
    The default frame of the 2D and 3D viewers is the world frame.
    
    Their is only one TransformationManager (all public methods are
    static).
    
    .. note::
        on shared and raw pointers
    
    Transformation and Frames can be manipulated locally using their raw
    pointer. Use the shared pointer only if you need to own the object as
    well, that if the Transformation or Frame is part of your class
    members and need to be kept alive for your code to work. Using a
    shared pointer ensures that the Frame or Transformation won't be
    removed from the system by the TransformationManager. If you only need
    to access or modify information on a frame or transformation, only use
    the raw pointer.
    
    \\section TransformationManager API
    
    The TransformationManager provides the following utilities: -
    addFrameOfReference(...) methods add FrameOfReference objects -
    addTransformation(...) methods add Transformation objects -
    getTransformationOwnership(..) methods returns the shared_ptr to a
    Transformation - getTransformation(...) method computes a
    Transformation between two Frames, if any path exists between them -
    updateTransformation(...) methods modify the transformation matrix
    values
    
    Two methods are provided for the manipulation of world frame: -
    getWorldFrame() returns the unique world frame, to which all frames
    should have a path to (composed of 1 or more transformations). -
    ensurePathToWorld() to add a default identity Transformation between
    the provided Frame and the worldFrame if no Transformation was
    defined.
    
    \\section Transformation
    
    A Transformation can either be: - directly defined by the user using
    addTransformation() -> it holds a user defined 4x4 matrix. It has 0
    sources. - an inverse of another Transformation. Inverse
    Transformation are automatically generated by the
    TransformationManager. It therefore has 1 source (the direct
    Transformation it is the inverse of). - a composite transformation
    defined automatically by the TransformationManager to pass from one
    source to another one over more than one frame. It is composed by a
    list of other transformations. It therefore has more than one sources.
    
    Information about a Transformation t can be obtained from the
    TransformationManager using: - hasSources(t) and getSources(t) -
    isCompositeTransformation(t) - isInverseTransformation(t) -
    isDefaultIdentityToWorld(t)
    
    There is three cases where TransformationManager will automatically
    create a transformation: - when a linear transformation is added using
    addTransformation(), the inverse transformation is automatically
    generated and stored in the system. The new transformation will
    therefore only have 1 source. - when getTransformation() is called and
    finds a new path of transformations between the two given frames, it
    will generate a new composed transformation (for optimization) from
    those transformations. The new transformation will therefore have all
    those transformations as sources. - when ensurePathToWorld(f) is
    called, and no path can be found between f and the world frame, then a
    new identity transformation from f to world frame is created. This new
    transformation has no source (note that TransformationManager will
    also create its inverse, which has 1 source). Use
    isDefaultIdentityToWorld() to check if a transformation was generated
    this way.
    
    Note that TransformationManager always generates an inverse
    transformation for any existing linear transformation if it does not
    exist already.
    
    \\section Transformation Sources
    
    The lists of Transformation sources are managed by the
    TransformationManager. Sources are the transformations that are used
    (composed) to compute a Transformation t. If any of the sources are
    modified, t is guaranteed to reflect this update, i.e., it is
    recomputed from its sources. If t has only one source, this means t is
    the inverse of this source.
    
    See also:
        hasSources() getSources()
    
    \\section FrameOfReference A FrameOfReference represents a specific
    system of coordinates in which component data's coordinates are
    expressed.
    
    It can have a name, a description, and anatomical labels associated to
    its axes: for example, the X axis may have label L on the lower
    values, and R on the higher values (for Left/Right anatomical
    orientation). You can add new Frames of reference using
    addFrameOfReference methods when creating a new Component (even though
    Component constructor creates a default one for you), or if you need
    to manage multiple frames in your component (e.g. for an articulated
    robot).
    
    If you need to get ownership of a specific FrameOfReference (e.g. you
    want your Component to store the same Frame as another Component), use
    getFrameOfReferenceOwnership()
    
    To edit anatomical information, name or description, refer to
    FrameOfReference class.
    
    \\section Path management
    
    When you need a Transformation from one Frame to another, the method
    to call is getTransformation()
    
    This method first looks if a Transformation was added using
    addTransformation between those Frames, then if there is already a
    cached composite Transformation linking both Frames, and finally, it
    checks whether there is a path in the graph of Frames and
    Transformations linking those Frames using intermediary Frames.
    
    Private methods hasPath() and getPath() are used to search the graph
    for a suitable path. If there is one, a new cached composite
    Transformation is stored (it combines the path of Transformations into
    one). If there is no path, these methods return nullptr.
    
    When the user wants to ensure that a specific Frame has a
    Transformation to the WorldFrame, she/he should call
    ensurePathToWorld(). This will create a default identity
    Transformation to the WorldFrame if there is no existing path between
    the Frame and the WorldFrame.
    
    All default identity Transformations are marked, so that if a new
    Transformation is added using addTransformation, these Transformations
    can be automatically removed. This is needed to avoid creation of
    multiple path between Frames (there will therefore never be any cycle
    in the Frame/Transformation graph).
    
    \\section Memory management and cleaning up
    
    As FrameOfReference and Transformation constructors are private, all
    Frames and Transformations must be created through the
    TransformationManager.
    
    Internally, Transformation and FrameOfReference objects are stored
    using std::shared_ptr
    
    This means that ownership of these objects is shared between the
    TransformationManager and custom objects used in CamiTK such as
    Component (which owns its FrameOfReference), ImageComponent (which
    also owns its internal Transformation from raw to main).
    
    Most methods of this class return or use raw pointers, meaning they do
    not return or get ownership of the FrameOfReference or Transformation
    object. The raw pointers are meant to be used for immediate processing
    (e.g. getting the name of a Frame, transforming the coordinates of a
    point using a Transformation) but not to store the pointer. If you
    need to store the object, you must use getFrameOfReferenceOwnership()
    and getTransformationOwnership() This makes explicit who is owning
    Transformations and Frames.
    
    Note that you may not get ownership of a composite Transformation
    (computed from others) or a default Transformation, as those must be
    removable at all times.
    
    TransformationManager may delete any Transformation that is not owned
    outside its internal data structure (which mean they are not used
    anymore apart from internally).
    
    See also:
        cleanupFramesAndTransformation(), removeDefaultPaths(),
        removeTransformation().
    
    To determine whether a Transformation or Frame is owned outside the
    TransformationManager, std::shared_ptr usage counter is used.
    
    \\section Using TransformationManager in your extensions:
    TransformationManager use cases
    
    Most common use cases for CamiTK extension developers: - adding a new
    Component: use the default Component constructor which creates a new
    default FrameOfReference for the Component - adding a new Component
    created from another one: - if the new Component is using the same
    Frame, just set its Frame to the original component's frame using
    InterfaceFrame::setFrameFrom() - if you need to ensure a Component has
    its own independent frame, use InterfaceFrame::resetFrame() - Special
    cases for ImageComponent: ImageComponents have a data frame and a main
    transformation (from their data to their main frame) that needs to be
    taken care of. Be aware that ImageComponent::setFrameFrom() and
    ImageComponent::resetFrame() are reimplemented to take care of the
    data frame and main transformation. For instance: - your action
    creates an image outImage from an image inImage, just call
    `out->setFrameFrom(in)` - your action creates an mesh outMesh from an
    image inImage, call `outMesh-
    >setFrame(TransformationManager::getFrameOfReferenceOwnership(inImage-
    >getDataFrame()));` as the mesh is computed from the image data, the
    mesh is defined in the image component data frame
    
    - Registering a Component to another: for example, compute the
    registration between two meshes, then use addTransformation() between
    the frames of the two meshes.
    
    .. warning::
        : if there is already a Transformation path between the meshes and
        the world frame is not in this path, addTransformation() will
        return nullptr. This means that computed transformation (for
        example after previous registration) already gives a
        transformation between the two meshes. If you want to update
        previous registration, you should use updateTransformation()
        instead. If updateTransformation() also returns nullptr, this
        means you are trying to create a cycle in the transformation
        graph. - You can use multiple Frames and Transformation inside
        your own Component, use the TransformationExplorer to check if it
        is working as expected.
    
    In the case of an articulated robot, each part may have its own
    FrameOfReference, and each articulation its own Transformation. You
    can use methods addFrameOfReference, addTransformation,
    updateTransformation to create and update frames and transformations
    in your Action and Component extensions.
    """
    @staticmethod
    def addFrameOfReference(name: str, description: str = '') -> ...:
        """
        Add a FrameOfReference with a name and description This is the
        standard way to create a new FrameOfReference
        
        Returns:
            the corresponding shared_ptr (save it to keep ownership, ignore if
            ownership is not needed)
        """
    @staticmethod
    def addTransformation(arg0: ..., arg1: ...) -> ...:
        """
        Create and register a new identity Transformation between two frames
        if there is no existing transformation between those frames.
        
        Returns:
            a pointer to the new Transformation or nullptr if a transformation
            between those frames already exist (use getTransformation())
        """
    @staticmethod
    def getFramesOfReference() -> list[FrameOfReference]:
        """
        Get a list of all stored FrameOfReference
        """
    @staticmethod
    def getTransformation(arg0: ..., arg1: ...) -> ...:
        """
        Get a transformation if it exists or compute it if a path exists
        between the frames.
        """
    @staticmethod
    def getTransformations() -> list[FrameOfReference]:
        """
        Returns the list of all transformations managed in the system,
        independents or not.
        """
    @staticmethod
    def getWorldFrame() -> ...:
        """
        Get the WorldFrame
        
        This is the Frame that links all Frames so that there is a common
        space If a Component's frame is not linked by a Transformation to any
        other Frame, a default identity Transformation should be created
        between it and this worldFrame
        
        This is done by calling ensurePathToWorld
        """
    @staticmethod
    def preferredDefaultIdentityToWorldLink(arg0: ...) -> bool:
        """
        Call this method when you prefer (for visualization purpose only) to
        have a direct link to world from the given frame instead of any other
        path. If another path to world exists from the frame and include a
        default identity transformation to world, it will be delete in favor
        of a new default identity transformation that directly links the given
        frame to world.
        
        Returns:
            false if there is a path to world that contains no default
            identity transformation
        """
    @staticmethod
    @typing.overload
    def removeTransformation(arg0: ...) -> bool:
        """
        Remove an existing transformation between the two frames.
        
        This method checks that the given shared_ptr<Transformation> has no
        other owner than the caller (i.e., only the caller of this method has
        ownership of the given shared_ptr). If this is true, then the
        shared_ptr will be set to nullptr, which will result in the deletion
        of the Transformation.
        
        If there is another owner, the shared_ptr is not modified, and the
        Transformation will not be removed.
        
        If the given shared_ptr is equal to nullptr (for instance when calling
        removeTransformation(getTransformationOwnership(t)) with t being a
        composite transformation), this method returns false.
        
        .. warning::
            if successful, the shared_ptr must not be used anymore (as it is
            set to nullptr).
        
        Returns:
            true if the Transformation was removed from the transformation
            system, false otherwise.
        """
    @staticmethod
    @typing.overload
    def removeTransformation(arg0: ..., arg1: ...) -> bool:
        """
        Remove an existing transformation between the two frames.
        
        See also:
            removeTransformation(std::shared_ptr<Transformation>&)
        
        .. warning::
            if successful, the shared_ptr must not be used anymore (as it is
            set to nullptr) after that.
        """
    @staticmethod
    @typing.overload
    def updateTransformation(arg0: ..., arg1: ..., arg2: numpy.ndarray) -> None:
        """
        Modify the Transformation between the two frames by setting its
        vtkTransform @warning only the vtkMatrix of the given vtkTransform is
        duplicated (later modification of vtkTr will not update the
        transformations)
        """
    @staticmethod
    @typing.overload
    def updateTransformation(arg0: ..., arg1: ..., arg2: numpy.ndarray) -> None:
        """
        Modify the Transformation between the two frames by setting its
        vtkMatrix
        Note that the vtkMatrix must is given as a 4x4 numpy array.
        """
    @staticmethod
    @typing.overload
    def updateTransformation(arg0: ..., arg1: numpy.ndarray) -> None:
        """
        Modify the Transformation by setting its vtkTransform @warning only
        the vtkMatrix of the given vtkTransform is duplicated (later
        modification of vtkTr will not update the transformations)
        """
    @staticmethod
    @typing.overload
    def updateTransformation(arg0: ..., arg1: numpy.ndarray) -> None:
        """
        Modify the Transformation by setting its matrix
        Note that the vtkMatrix must is given as a 4x4 numpy array.
        """
class pythonConsoleRedirect:
    @staticmethod
    def flush() -> None:
        ...
    @staticmethod
    def write(arg0: typing.Any) -> None:
        ...
def error(arg0: str) -> None:
    """
    Logs an error message.
    """
def getDebugInfo() -> str:
    ...
def getPythonVersion() -> str:
    ...
def info(arg0: str) -> None:
    """
    Logs an info message.
    """
def newImageComponentFromNumpy(array: numpy.ndarray, name: str = 'image', spacing: typing.Any = None) -> ImageComponent:
    """
    Create an Image Component by creating a new vtkImageData from the given array of voxel and spacing, if provided)
    """
def newMeshComponentFromNumpy(name: str = 'mesh', points_array: numpy.ndarray[numpy.float64], polys_array: numpy.ndarray[numpy.int64] = ...) -> MeshComponent:
    """
    Creates a Mesh Component by creating a new vtkPointSet made of the given point array and poly array(only vtkPolyData and point clouds are supported for now)
    """
def redirectStandardStreams() -> None:
    ...
def refresh() -> None:
    """
    Refreshes the application, including the transformation manager and all registered viewers.
    """
def show() -> None:
    """
    Starts a default CamiTK Application with the default main window and event loop, and shows the main window.
              This function is experimental and is still not entirely functional nor stable.
              Use at your own risks and only if you know what your doing.
              
              You have been warned!
    """
def startApplication() -> None:
    """
    Starts a default CamiTK Application with the default main window and event loop.
              This function is experimental and is still not entirely functional nor stable.
              Use at your own risks and only if you know what your doing.
              
              You have been warned!
    """
def trace(arg0: str) -> None:
    """
    Logs a trace message.
    """
def warning(arg0: str) -> None:
    """
    Logs a warning message.
    """
__version__: str = 'CamiTK 6.0.0'