1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
/*****************************************************************************
* $CAMITK_LICENCE_BEGIN$
*
* CamiTK - Computer Assisted Medical Intervention ToolKit
* (c) 2001-2025 Univ. Grenoble Alpes, CNRS, Grenoble INP - UGA, TIMC, 38000 Grenoble, France
*
* Visit http://camitk.imag.fr for more information
*
* This file is part of CamiTK.
*
* CamiTK is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* CamiTK is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with CamiTK. If not, see <http://www.gnu.org/licenses/>.
*
* $CAMITK_LICENCE_END$
****************************************************************************/
// -- Core image component stuff
#include "ArbitrarySingleImageComponent.h"
#include "Component.h"
#include "ImageComponent.h"
// -- Core stuff
#include "Log.h"
// -- VTK stuff
// disable warning generated by clang about the surrounded header
#include "CamiTKDisableWarnings"
#include <vtkProperty.h>
#include "CamiTKReEnableWarnings"
#include "Application.h"
#include "Transformation.h"
#include "TransformationManager.h"
#include "Property.h"
#include "Log.h"
#include <vtkSmartPointer.h>
#include <vtkUnstructuredGrid.h>
#include <vtkImageClip.h>
#include <vtkImageChangeInformation.h>
#include <vtkMatrix4x4.h>
#include <vtkTransformFilter.h>
#include <vtkDataSetMapper.h>
// Maths
#include <cmath>
#include <QVector3D>
namespace camitk {
// Useful debug macros for displaying homogeneous matrix and points
#define displayPoint(...) CAMITK_INFO_ALT(#__VA_ARGS__ + QString(" = [%1,%2,%3,%4]") \
.arg(__VA_ARGS__[0], 8, 'f', 4, ' ') \
.arg(__VA_ARGS__[1], 8, 'f', 4, ' ') \
.arg(__VA_ARGS__[2], 8, 'f', 4, ' ') \
.arg(__VA_ARGS__[3], 8, 'f', 4, ' '))
#define displayQVector3D(...) CAMITK_INFO_ALT(#__VA_ARGS__ + QString(" = (%1,%2,%3)") \
.arg(__VA_ARGS__.x(), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__.y(), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__.z(), 8, 'f', 4, ' '))
#define displayMatrix4x4(...) CAMITK_INFO_ALT(#__VA_ARGS__ + QString("\n[%1,%2,%3,%4]\n[%5,%6,%7,%8]\n[%9,%10,%11,%12]\n[%13,%14,%15,%16]") \
.arg(__VA_ARGS__->GetElement(0, 0), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(0, 1), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(0, 2), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(0, 3), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(1, 0), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(1, 1), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(1, 2), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(1, 3), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(2, 0), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(2, 1), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(2, 2), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(2, 3), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(3, 0), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(3, 1), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(3, 2), 8, 'f', 4, ' ') \
.arg(__VA_ARGS__->GetElement(3, 3), 8, 'f', 4, ' '))
// -------------------- constructor --------------------
ArbitrarySingleImageComponent::ArbitrarySingleImageComponent(Component* parentComponent, const QString& name, vtkSmartPointer<vtkWindowLevelLookupTable> lut)
: SingleImageComponent(parentComponent, Slice::ARBITRARY, name, lut) {
// initial arbitrary slice is centered in the volume along the original z axis
addProperty(new Property("Translation", 0.5, tr("Current translation inside the image"), ""));
addProperty(new Property("Rotation", QVector3D(), tr("Rotation"), "degrees"));
// store the value for later reuse
ImageComponent* parentImage = dynamic_cast<ImageComponent*>(parentComponent);
dimensions = parentImage->getImageData()->GetDimensions();
spacing = parentImage->getImageData()->GetSpacing();
// Create frame and transformation to move from the resliced image (managed by mySlice) to the original image data frame
initArbitraryTransformation(TransformationManager::addFrameOfReference(parentComponent->getName() + " (arbitrary)", "Arbitrary frame of image '" + parentImage->getName() + "'"),
TransformationManager::getFrameOfReferenceOwnership(parentImage->getDataFrame()));
resetArbitraryTransformationMatrix();
// apply default transformation
ArbitrarySingleImageComponent::updateTranslation();
ArbitrarySingleImageComponent::updateRotation();
// set default size for the frame axis actor
// getFrameAxisActor()->SetTotalLength(spacing[2] * 10.0, spacing[2] * 10.0, spacing[2] * 10.0);
}
// -------------------- destructor --------------------
ArbitrarySingleImageComponent::~ArbitrarySingleImageComponent() {
}
// -------------------- setFrame --------------------
void ArbitrarySingleImageComponent::setFrame(const std::shared_ptr<FrameOfReference>& newFrame) {
// -- 1. Save the current transformation matrix from the previous arbitrary to the previous (main) frame
vtkSmartPointer<vtkMatrix4x4> arbitraryTransformationMatrix ;
if (arbitraryTransformation != nullptr) {
arbitraryTransformationMatrix = arbitraryTransformation->getMatrix();
}
else {
arbitraryTransformationMatrix = vtkSmartPointer<vtkMatrix4x4>::New();
}
// -- 2. Create an new arbitrary frame (using the same name and description)
// (that will produce a clean break with the old system of frames / transformation)
std::shared_ptr<FrameOfReference> newArbitraryFrame = TransformationManager::addFrameOfReference(arbitraryFrame->getName(), arbitraryFrame->getDescription());
// -- 3. Update arbitrary and main frame and force the creation of a new arbitrary transformation
// between them
initArbitraryTransformation(newArbitraryFrame, newFrame, nullptr);
// Update the new transformation using the previous matrix
TransformationManager::updateTransformation(arbitraryTransformation.get(), arbitraryTransformationMatrix.Get());
}
// -------------------- getAllFrames --------------------
QMultiMap<const FrameOfReference*, Component*> ArbitrarySingleImageComponent::getAllFrames(bool includeChildrenFrames) {
QMultiMap<const FrameOfReference*, Component*> allFrames = Component::getAllFrames(includeChildrenFrames);
allFrames.insert(this->getArbitraryFrame(), this);
return allFrames;
}
// -------------------- getAllTransformations --------------------
QMultiMap<const Transformation*, Component*> ArbitrarySingleImageComponent::getAllTransformations(bool includeChildrenTransformations) {
QMultiMap<const Transformation*, Component*> allTransformations = Component::getAllTransformations();
allTransformations.insert(getArbitraryTransformation(), this);
return allTransformations;
}
// -------------------- initArbitraryTransformation --------------------
void ArbitrarySingleImageComponent::initArbitraryTransformation(const std::shared_ptr<FrameOfReference>& arbitraryFrame, const std::shared_ptr<FrameOfReference>& dataFrame, const std::shared_ptr<Transformation>& tr) {
// Remove previous transformation (if any) from arbitrary to main
TransformationManager::removeTransformation(arbitraryTransformation);
// after removeTransformation arbitraryTransformation must be nullptr
// set the frames
setArbitraryFrame(arbitraryFrame);
SingleImageComponent::setFrame(dataFrame);
// create a default transformation from the arbitrary frame to the main frame if needed
if (tr == nullptr) {
arbitraryTransformation = TransformationManager::addTransformation(getArbitraryFrame(), getFrame());
}
else {
arbitraryTransformation = tr;
}
// giving arbitraryTransformation to mySlice will allow the reslicer to compute the proper pixel values
// depending on the current arbitrary orientation
mySlice->setArbitraryTransform(arbitraryTransformation->getTransform());
}
// -------------------- resetArbitraryTransformationMatrix --------------------
void ArbitrarySingleImageComponent::resetArbitraryTransformationMatrix() {
// position x and y at the center of the slice
vtkSmartPointer<vtkMatrix4x4> T_a2m = vtkSmartPointer<vtkMatrix4x4>::New();
T_a2m->Identity();
T_a2m->SetElement(0, 3, dimensions[0] * spacing[0] / 2.0);
T_a2m->SetElement(1, 3, dimensions[1] * spacing[1] / 2.0);
TransformationManager::updateTransformation(arbitraryTransformation.get(), T_a2m.Get());
}
// -------------------- propertyValueChanged --------------------
void ArbitrarySingleImageComponent::propertyValueChanged(QString name) {
if (name == "Translation") {
// Changing Translation
updateTranslation();
}
else if (name == "Rotation") {
// Changing Rotation
updateRotation();
}
else {
SingleImageComponent::propertyValueChanged(name);
}
}
// -------------------- updatePropertyFromTransformation --------------------
void ArbitrarySingleImageComponent::updatePropertyFromTransformation() {
blockSignals(true);
setPropertyValue("Translation", computeTranslationRatio());
// update euler angles
double orientation[3];
getArbitraryTransformation()->getTransform()->GetOrientation(orientation);
setPropertyValue("Rotation", QVector3D(orientation[0], orientation[1], orientation[2]));
blockSignals(false);
}
// -------------------- resetTransform --------------------
void ArbitrarySingleImageComponent::resetTransform() {
// position x and y at the center of the slice
resetArbitraryTransformationMatrix();
setPropertyValue("Rotation", QVector3D());
// position z at 50% of the volume
setPropertyValue("Translation", 0.5);
}
// -------------------- updateTranslation --------------------
void ArbitrarySingleImageComponent::updateTranslation() {
// Set the translation value from the corresponding property value
double translationRatio = getPropertyValue("Translation").toDouble();
// Check interval validity
if (translationRatio < 0.0) {
translationRatio = 0.0;
}
else {
if (translationRatio > 1.0) {
translationRatio = 1.0;
}
}
// Compute the intersection of the z vector with the image borders
// i.e. the intersections given by C_m ± CZ_m with the image borders
// intersection of C_m → -CZ_m with the image border
QVector3D Cminus_m;
// intersection of C_m → +CZ_m with the image border
QVector3D Cplus_m;
computeIntersectionsWithImageBorders(Cminus_m, Cplus_m);
QVector3D CminusCplus_m = Cplus_m - Cminus_m;
CminusCplus_m = roundTo4Decimals(CminusCplus_m);
/// modify the translation part of the current transformation from arbitrary to main
vtkSmartPointer<vtkMatrix4x4> T_a2m = vtkSmartPointer<vtkMatrix4x4>::New();
T_a2m->DeepCopy(getArbitraryTransformation()->getMatrix());
for (int i = 0; i < 3; i++) {
T_a2m->SetElement(i, 3, Cminus_m[i] + translationRatio * CminusCplus_m[i]);
}
cleanMatrix(T_a2m);
if (checkCenter(T_a2m)) {
TransformationManager::updateTransformation(arbitraryTransformation.get(), T_a2m.Get());
// update picking representation (update pickplane position + hide pixel actor)
updatePickPlane();
getPixelActor()->VisibilityOff();
}
}
// -------------------- updateRotation --------------------
void ArbitrarySingleImageComponent::updateRotation() {
QVector3D rotation = getPropertyValue("Rotation").value<QVector3D>();
double angleX = rotation.x();
double angleY = rotation.y();
double angleZ = rotation.z();
// isolate translation
QVector3D translation_a2m;
for (int i = 0; i < 3; i++) {
translation_a2m[i] = getArbitraryTransformation()->getMatrix()->GetElement(i, 3);
}
// create rotation
vtkSmartPointer<vtkTransform> transform_R_a = vtkSmartPointer<vtkTransform>::New();
transform_R_a->Identity();
transform_R_a->RotateZ(angleZ);
transform_R_a->RotateY(angleY);
transform_R_a->RotateX(angleX);
transform_R_a->Update();
// concatenate rotation and translation to compute the new transformation matrix
// from arbitrary frame to main frame
vtkSmartPointer<vtkMatrix4x4> T_a2m = transform_R_a->GetMatrix();
for (int i = 0; i < 3; i++) {
T_a2m->SetElement(i, 3, translation_a2m[i]);
}
cleanMatrix(T_a2m);
if (checkCenter(T_a2m)) {
TransformationManager::updateTransformation(arbitraryTransformation.get(), T_a2m.Get());
// update picking representation (update pickplane position + hide pixel actor)
updatePickPlane();
getPixelActor()->VisibilityOff();
// update the property (but do not propagate as this is the current value)
blockSignals(true);
setPropertyValue("Translation", computeTranslationRatio());
blockSignals(false);
}
}
// -------------------- computeTranslationRatio --------------------
double ArbitrarySingleImageComponent::computeTranslationRatio() const {
// compute the intersection of C_m ± CZ_m with the image borders
// intersection of C_m → -CZ_m with the image borders
QVector3D Cminus_m;
// intersection of C_m → +CZ_m with the image borders
QVector3D Cplus_m;
computeIntersectionsWithImageBorders(Cminus_m, Cplus_m);
// C_m is the center of rotation
double C_m[4];
getArbitraryCenter(C_m);
// vector from Cminus to C
QVector3D CminusC_m = QVector3D(C_m[0], C_m[1], C_m[2]) - Cminus_m;
QVector3D CminusCplus_m = Cplus_m - Cminus_m;
return CminusC_m.length() / CminusCplus_m.length();
}
// -------------------- computeIntersectionsWithImageBorders --------------------
void ArbitrarySingleImageComponent::computeIntersectionsWithImageBorders(QVector3D& Cz_min, QVector3D& Cz_max) const {
// C_m is the center of rotation
double C_m[4];
getArbitraryCenter(C_m);
// CZ_m is the vector perpendicular to the current arbitrary plane expressed in the main frame
double CZ_m[4];
getArbitraryPlaneNormal(CZ_m);
// compute the intersection of C_m ± CZ_m with the image border
computeIntersectionsWithImageBorders(QVector3D(C_m[0], C_m[1], C_m[2]), QVector3D(CZ_m[0], CZ_m[1], CZ_m[2]), Cz_min, Cz_max);
}
void ArbitrarySingleImageComponent::computeIntersectionsWithImageBorders(const QVector3D& origin, const QVector3D& upVector, QVector3D& intersectionMin, QVector3D& intersectionMax) const {
QVector3D downVector = -upVector;
// absolute values of centers of faces
double xCenter = dimensions[0] * spacing[0] / 2.0;
double yCenter = dimensions[1] * spacing[1] / 2.0;
double zCenter = dimensions[2] * spacing[2] / 2.0;
// check intersection to front plane
double zMin = 0.0;
QVector3D frontCenter(xCenter, yCenter, zMin);
bool intersect = linePlaneIntersectionPoint(downVector, origin, QVector3D(0.0, 0.0, 1.0), frontCenter, intersectionMin);
if (intersect && pointInsideVolume(intersectionMin)) {
// back plane
// substract a little more than half of the voxel size to make sure the cutting plane does not go out of the image bound
// TODO remove this substraction when the 1/2 voxel of displacement bug in the viewer is fixed
double zMax = dimensions[2] * spacing[2] - spacing[2] / 1.9;
linePlaneIntersectionPoint(upVector, origin, QVector3D(0.0, 0.0, -1.0), QVector3D(xCenter, yCenter, zMax), intersectionMax);
}
else {
// check intersection to top plane
double yMin = 0.0;
QVector3D topCenter(xCenter, yMin, zCenter);
intersect = linePlaneIntersectionPoint(downVector, origin, QVector3D(0.0, 1.0, 0.0), topCenter, intersectionMin);
if (intersect && pointInsideVolume(intersectionMin)) {
// bottom plane
double yMax = dimensions[1] * spacing[1] - spacing[1] / 1.9; // TODO remove this substraction when the 1/2 voxel of displacement bug in the viewer is fixed
linePlaneIntersectionPoint(upVector, origin, QVector3D(0.0, -1.0, 0.0), QVector3D(xCenter, yMax, zCenter), intersectionMax);
}
else {
// intersection is with left/right plane
double xMin = 0.0;
double xMax = dimensions[0] * spacing[0] - spacing[0] / 1.9; // TODO remove this substraction when the 1/2 voxel of displacement bug in the viewer is fixed
linePlaneIntersectionPoint(downVector, origin, QVector3D(1.0, 0.0, 0.0), QVector3D(xMin, yCenter, zCenter), intersectionMin);
linePlaneIntersectionPoint(upVector, origin, QVector3D(-1.0, 0.0, 0.0), QVector3D(xMax, yCenter, zCenter), intersectionMax);
}
}
// rounding to avoid drifts
intersectionMin = roundTo4Decimals(intersectionMin);
intersectionMax = roundTo4Decimals(intersectionMax);
}
// -------------------- checkCenter --------------------
bool ArbitrarySingleImageComponent::checkCenter(vtkSmartPointer<vtkMatrix4x4> transform) const {
// positive check only if the given transform will keep the center inside the image bounding box
// if the center is going to be moved outside of the image bounding box, the given transform
// should not be used
// center is given by the translation
return pointInsideVolume(QVector3D(transform->GetElement(0, 3), transform->GetElement(1, 3), transform->GetElement(2, 3)));
}
// -------------------- pointInsideVolume --------------------
bool ArbitrarySingleImageComponent::pointInsideVolume(QVector3D p) const {
QVector3D pRounded = roundTo4Decimals(p);
return (pRounded.x() >= 0.0
&& pRounded.x() <= dimensions[0] * spacing[0]
&& pRounded.y() >= 0.0
&& pRounded.y() <= dimensions[1] * spacing[1]
&& pRounded.z() >= 0.0
&& pRounded.z() <= dimensions[2] * spacing[2]);
}
// -------------------- getImageCenterInParent --------------------
void ArbitrarySingleImageComponent::getArbitraryCenter(double center[4]) const {
// center == C_m, the center of the arbitrary frame expressed in the main frame
for (int i = 0; i < 3; i++) {
center[i] = getArbitraryTransformation()->getMatrix()->GetElement(i, 3);
}
center[3] = 1.0;
}
// -------------------- getArbitraryPlaneNormal --------------------
void ArbitrarySingleImageComponent::getArbitraryPlaneNormal(double normalVector[4]) const {
// z is normal to the cutting plane
// normalVector_a is the cutting plane normal vector expressed in the arbitrary frame
double normalVector_a[4] = { 0.0, 0.0, 1.0, 0.0 };
// note: for homogeneous coordinates, both double[4] can be used for representing 3D points and 3D vectors.
// But their is a difference in the last component that distinguishes a 3D vector from a 3D point
// - if the last component is 1.0, the double[4] represents a 3D point in homogeneous coordinates
// - if the last component is 0.0, the double[4] represents a 3D vector in homogeneous vector coordinates
// This guarantees coherent result when multiplying with homogeneous matrix
// zDirection is the vector perpendicular to the current arbitrary plane expressed in the main frame
getArbitraryTransformation()->getMatrix()->MultiplyPoint(normalVector_a, normalVector);
normalVector[3] = 0.0;
}
// -------------------- get3DCursor --------------------
vtkSmartPointer<vtkActor> ArbitrarySingleImageComponent::get3DCursor() {
// Because we cannot add the same actor to multiple viewers
// We duplicate the 3D cursor Actor of the parent ImageComponent or we return our copy if it was already built
if (getParentComponent() != nullptr && cursorActor == nullptr) {
vtkSmartPointer<vtkActor> parentCursor = getParentComponent()->get3DCursor();
if (parentCursor != nullptr) {
cursorActor = vtkSmartPointer<vtkActor>::New();
vtkSmartPointer<vtkDataSetMapper> cursorMapper = vtkSmartPointer<vtkDataSetMapper>::New();
auto transformFilter = vtkSmartPointer<vtkTransformFilter>::New();
transformFilter->SetInputData(parentCursor->GetMapper()->GetInput());
// use the inverse transform (ask the transformation manager to always have an updated version)
transformFilter->SetTransform(TransformationManager::getTransformation(frameOfReference.get(), arbitraryFrame.get())->getTransform());
cursorMapper->SetInputConnection(transformFilter->GetOutputPort());
cursorActor->SetMapper(cursorMapper);
cursorActor->SetProperty(parentCursor->GetProperty());
// The cursor cannot be picked
cursorActor->PickableOff();
cursorActor->VisibilityOn();
}
}
return cursorActor;
}
// -------------------- setSlice --------------------
void ArbitrarySingleImageComponent::setSlice(int s) {
// updateTranslation(0.0, 0.0, double(s) / 100.0);
// internal translation is a percentage, while s is an int
// but if the current slice (int) computed from the current translation percentage is equals to s,
// then nothing should be modified
if (getSlice() != s) {
// make sure s is inside [0..100]
if (s < 0) {
s = 0;
}
else {
if (s > 100) {
s = 100;
}
}
setPropertyValue("Translation", double(s) / 100.0);
}
}
void ArbitrarySingleImageComponent::setSlice(double x, double y, double z) {
/// x,y,z are expressed in the main frame (parent ImageComponent's data frame)
/// → this is the new absolute translation
/// modify the translation part of the current transformation from arbitrary to main
/// x and y are not managed by set slice. Do not modify these values
vtkSmartPointer<vtkMatrix4x4> T_a2m = vtkSmartPointer<vtkMatrix4x4>::New();
T_a2m->DeepCopy(getArbitraryTransformation()->getMatrix());
T_a2m->SetElement(0, 3, x);
T_a2m->SetElement(1, 3, y);
T_a2m->SetElement(2, 3, z);
cleanMatrix(T_a2m);
if (checkCenter(T_a2m)) {
TransformationManager::updateTransformation(arbitraryTransformation.get(), T_a2m.Get());
// translate to the plane that is parallel to z direction
// Update the pick point actor
// Set pixel position in current slice
setPixelRealPosition(x, y, z);
// update picking representation (update pickplane position + hide pixel actor)
updatePickPlane();
getPixelActor()->VisibilityOff();
// update the property (but do not propagate as this is the current value)
blockSignals(true);
setPropertyValue("Translation", computeTranslationRatio());
blockSignals(false);
}
}
// -------------------- getSlice --------------------
int ArbitrarySingleImageComponent::getSlice() const {
return computeTranslationRatio() * 100.0;
}
// -------------------- getNumberOfSlices --------------------
int ArbitrarySingleImageComponent::getNumberOfSlices() const {
return 100;
}
// -----------------------
// maths utility methods
// -----------------------
// -------------------- Multiply4x4 --------------------
template<typename T>
vtkSmartPointer<vtkMatrix4x4> ArbitrarySingleImageComponent::Multiply4x4(T a, T b) {
vtkSmartPointer<vtkMatrix4x4> c = vtkSmartPointer<vtkMatrix4x4>::New();
vtkMatrix4x4::Multiply4x4(a, b, c);
return c;
}
template<typename T, typename... Args>
vtkSmartPointer<vtkMatrix4x4> ArbitrarySingleImageComponent::Multiply4x4(T a, T b, Args... args) {
return Multiply4x4(a, Multiply4x4(b, args...));
}
// -------------------- linePlaneIntersectionPoint --------------------
bool ArbitrarySingleImageComponent::linePlaneIntersectionPoint(QVector3D lineVector, QVector3D linePoint, QVector3D planeNormal, QVector3D planePoint, QVector3D& intersection) {
lineVector.normalize();
planeNormal.normalize();
// Let P(x,y,z) be the intersection point
// As the plane equation is:
// (P - planePoint) . planeNormal = 0 (. denotes dot product)
// and the line equation:
// P = linePoint + k * lineVector
// The equation linking both above is:
// (linePoint + k * lineVector - planePoint) . planeNormal = 0
// => k = - [ (linePoint - planePoint).planeNormal ] / (lineVector . planeNormal)
// if (lineVector . planeNormal) == 0.0 line is parallel to plane, this method should return false
float lDotN = QVector3D::dotProduct(lineVector, planeNormal);
if (fabs(lDotN) < 1e-10) {
// line and plane are parallel
return false;
}
else {
QVector3D u = linePoint - planePoint; // vector from plane point to the line point
float uDotN = QVector3D::dotProduct(u, planeNormal);
float k = - uDotN / lDotN;
intersection = linePoint + k * lineVector;
return true;
}
}
// -------------------- roundTo4Decimals --------------------
float ArbitrarySingleImageComponent::roundTo4Decimals(float input) {
float output = (int)(input * 10000 + .5);
return (float) output / 10000;
}
QVector3D ArbitrarySingleImageComponent::roundTo4Decimals(QVector3D input) {
return QVector3D(roundTo4Decimals(input.x()), roundTo4Decimals(input.y()), roundTo4Decimals(input.z()));
}
// -------------------- cleanMatrix --------------------
void ArbitrarySingleImageComponent::cleanMatrix(vtkSmartPointer<vtkMatrix4x4> matrixToClean, double epsilon) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (fabs(matrixToClean->GetElement(i, j)) < epsilon) {
matrixToClean->SetElement(i, j, 0.0);
}
}
}
matrixToClean->SetElement(3, 0, 0.0);
matrixToClean->SetElement(3, 1, 0.0);
matrixToClean->SetElement(3, 2, 0.0);
matrixToClean->SetElement(3, 3, 1.0);
}
}
|