File: grammar.ml

package info (click to toggle)
camlp4 2.04-3
  • links: PTS
  • area: main
  • in suites: potato
  • size: 1,576 kB
  • ctags: 3,108
  • sloc: ml: 26,444; makefile: 736; sh: 203
file content (731 lines) | stat: -rw-r--r-- 22,629 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
(* camlp4r *)
(***********************************************************************)
(*                                                                     *)
(*                             Camlp4                                  *)
(*                                                                     *)
(*        Daniel de Rauglaudre, projet Cristal, INRIA Rocquencourt     *)
(*                                                                     *)
(*  Copyright 1998 Institut National de Recherche en Informatique et   *)
(*  Automatique.  Distributed only by permission.                      *)
(*                                                                     *)
(***********************************************************************)

(* $Id: grammar.ml,v 2.2 1999/02/27 11:04:26 ddr Exp $ *)

open Stdpp;
open Gramext;

open Format;

value rec flatten_tree =
  fun
  [ DeadEnd -> []
  | LocAct _ _ -> [[]]
  | Node {node = n; brother = b; son = s} ->
      List.map (fun l -> [n :: l]) (flatten_tree s) @ flatten_tree b ]
;

value print_str s = print_string ("\"" ^ String.escaped s ^ "\"");

value rec print_symbol =
  fun
  [ Slist0 s ->
      do print_string "LIST0"; print_string " "; print_symbol1 s; return ()
  | Slist0sep s t ->
      do print_string "LIST0";
         print_string " ";
         print_symbol1 s;
         print_string " SEP ";
         print_symbol1 t;
      return ()
  | Slist1 s ->
      do print_string "LIST1"; print_string " "; print_symbol1 s; return ()
  | Slist1sep s t ->
      do print_string "LIST1";
         print_string " ";
         print_symbol1 s;
         print_string " SEP ";
         print_symbol1 t;
      return ()
  | Sopt s -> do print_string "OPT "; print_symbol1 s; return ()
  | Stoken (con, prm) when con <> "" && prm <> "" ->
      do print_string con; print_space (); print_str prm; return ()
  | Snterml e l ->
      do print_string e.ename;
         print_space ();
         print_string "LEVEL";
         print_space ();
         print_str l;
      return ()
  | s -> print_symbol1 s ]
and print_symbol1 =
  fun
  [ Stoken ("", s) -> print_str s
  | Snterm e -> print_string e.ename
  | Sself -> print_string "SELF"
  | Snext -> print_string "NEXT"
  | Stoken (con, "") -> print_string con
  | Stree t -> print_level print_space (flatten_tree t)
  | s -> do print_string "("; print_symbol s; print_string ")"; return () ]
and print_rule symbols =
  do open_hovbox 0; return
  let _ =
    List.fold_left
      (fun sep symbol ->
         do sep (); print_symbol symbol; return
         fun () -> do print_string ";"; return print_space ())
      (fun () -> ()) symbols
  in
  close_box ()
and print_level print_space rules =
  do open_hovbox 0; print_string "[ "; return
  let _ =
    List.fold_left
      (fun sep rule ->
         do sep (); print_rule rule; return
         fun () -> do print_space (); print_string "| "; return ())
      (fun () -> ()) rules
  in
  do print_string " ]"; close_box (); return ()
;

value print_levels elev =
  let _ =
    List.fold_left
      (fun sep lev ->
         let rules =
           List.map (fun t -> [Sself :: t]) (flatten_tree lev.lsuffix) @
             flatten_tree lev.lprefix
         in
         do sep ();
            open_hovbox 2;
            match lev.lname with
            [ Some n ->
                do print_string ("\"" ^ String.escaped n ^ "\"");
                   print_break 1 2;
                return ()
            | _ -> () ];
            match lev.assoc with
            [ LeftA -> print_string "LEFTA"
            | RightA -> print_string "RIGHTA"
            | NonA -> print_string "NONA" ];
            close_box ();
            print_break 1 2;
            print_level force_newline rules;
         return fun () -> do print_cut (); print_string "| "; return ())
      (fun () -> ()) elev
  in
  ()
;

value print_entry e =
  do open_vbox 0;
     print_string "[ ";
     match e.edesc with
     [ Dlevels elev -> print_levels elev
     | Dparser _ -> print_string "<parser>" ];
     print_string " ]";
     close_box ();
     print_newline ();
  return ()
;

type g = Gramext.grammar;

external grammar_obj : g -> grammar = "%identity";

value floc = ref (fun _ -> failwith "internal error when computing location");
value loc_of_token_interval bp ep =
  if bp == ep then
    if bp == 0 then (0, 1)
    else let a = snd (floc.val (bp-1)) in (a, a + 1)
  else
    let (bp1, bp2) = floc.val bp in
    let (ep1, ep2) = floc.val (pred ep) in
    (if bp1 < ep1 then bp1 else ep1, if bp2 > ep2 then bp2 else ep2)
;

value rec name_of_symbol entry =
  fun
  [ Snterm e -> "[" ^ e.ename ^ "]"
  | Snterml e l -> "[" ^ e.ename ^ " level " ^ l ^ "]"
  | Sself | Snext -> "[" ^ entry.ename ^ "]"
  | Stoken tok -> entry.egram.glexer.Token.text tok
  | _ -> "???" ]
;

value rec name_of_symbol_failed entry =
  fun
  [ Slist0 s -> name_of_symbol_failed entry s
  | Slist0sep s _ -> name_of_symbol_failed entry s
  | Slist1 s -> name_of_symbol_failed entry s
  | Slist1sep s _ -> name_of_symbol_failed entry s
  | Sopt s -> name_of_symbol_failed entry s
  | Stree t -> name_of_tree_failed entry t
  | s -> name_of_symbol entry s ]
and name_of_tree_failed entry =
  fun
  [ Node {node = s; brother = bro; son = son} ->
      let txt = name_of_symbol_failed entry s in
      let txt =
        match (s, son) with
        [ (Sopt _, Node _) -> txt ^ " or " ^ name_of_tree_failed entry son
        | _ -> txt ]
      in
      let txt =
        match bro with
        [ DeadEnd | LocAct _ _ -> txt
        | _ -> txt ^ " or " ^ name_of_tree_failed entry bro ]
      in
      txt
  | DeadEnd | LocAct _ _ -> "???" ]
;

value tree_failed entry prev_symb_result prev_symb tree =
  let txt = name_of_tree_failed entry tree in
  let txt =
    match prev_symb with
    [ Slist0 s ->
        let txt1 = name_of_symbol_failed entry s in
        txt1 ^ " or " ^ txt ^ " expected"
    | Slist1 s ->
        let txt1 = name_of_symbol_failed entry s in
        txt1 ^ " or " ^ txt ^ " expected"
    | Slist0sep s sep ->
        match Obj.magic prev_symb_result with
        [ [] ->
            let txt1 = name_of_symbol_failed entry s in
            txt1 ^ " or " ^ txt ^ " expected"
        | _ ->
            let txt1 = name_of_symbol_failed entry sep in
            txt1 ^ " or " ^ txt ^ " expected" ]
    | Slist1sep s sep ->
        match Obj.magic prev_symb_result with
        [ [] ->
            let txt1 = name_of_symbol_failed entry s in
            txt1 ^ " or " ^ txt ^ " expected"
        | _ ->
            let txt1 = name_of_symbol_failed entry sep in
            txt1 ^ " or " ^ txt ^ " expected" ]
    | Sopt _ | Stree _ -> txt ^ " expected"
    | _ -> txt ^ " expected after " ^ name_of_symbol entry prev_symb ]
  in
  txt ^ " (in [" ^ entry.ename ^ "])"
;

value symb_failed entry prev_symb_result prev_symb symb =
  let tree = Node {node = symb; brother = DeadEnd; son = DeadEnd} in
  tree_failed entry prev_symb_result prev_symb tree
;

external app : Obj.t -> 'a = "%identity";

value is_level_labelled n lev =
  match lev.lname with
  [ Some n1 -> n = n1
  | None -> False ]
;

value level_number entry lab =
  let rec lookup levn =
    fun
    [ [] -> failwith ("unknown level " ^ lab)
    | [lev :: levs] ->
        if is_level_labelled lab lev then levn
        else lookup (succ levn) levs ]
  in
  match entry.edesc with
  [ Dlevels elev -> lookup 0 elev
  | Dparser _ -> raise Not_found ]
;

value rec top_symb entry =
  fun
  [ Sself | Snext -> Snterm entry
  | Snterml e _ -> Snterm e
  | Slist1sep s sep -> Slist1sep (top_symb entry s) sep
  | _ -> raise Stream.Failure ]
;

value entry_of_symb entry =
  fun
  [ Sself | Snext -> entry
  | Snterm e -> e
  | Snterml e _ -> e
  | _ -> raise Stream.Failure ]
;

value top_tree entry =
  fun
  [ Node {node = s; brother = bro; son = son} ->
      Node {node = top_symb entry s; brother = bro; son = son}
  | _ -> raise Stream.Failure ]
;

value skip_if_empty bp p strm =
  if Stream.count strm == bp then Gramext.action (fun a -> p strm)
  else raise Stream.Failure
;

value continue entry bp a s son p1 =
  parser
    [: a = (entry_of_symb entry s).econtinue 0 bp a;
       act = p1 ? tree_failed entry a s son :] ->
      Gramext.action (fun _ -> app act a)
;

value do_recover parser_of_tree entry nlevn alevn bp a s son =
  parser
  [ [: a = parser_of_tree entry nlevn alevn (top_tree entry son) :] -> a
  | [: a = skip_if_empty bp (parser []) :] -> a
  | [: a =
         continue entry bp a s son
           (parser_of_tree entry nlevn alevn son) :] ->
      a ]
;

value strict_parsing = ref False;

value recover parser_of_tree entry nlevn alevn bp a s son strm =
  if strict_parsing.val then raise (Stream.Error (tree_failed entry a s son))
  else do_recover parser_of_tree entry nlevn alevn bp a s son strm
;

value rec parser_of_tree entry nlevn alevn =
  fun
  [ DeadEnd -> parser []
  | LocAct act _ -> parser [: :] -> act
  | Node {node = Sself; son = LocAct act _; brother = DeadEnd} ->
      parser [: a = entry.estart alevn :] -> app act a
  | Node {node = Sself; son = LocAct act _; brother = bro} ->
      let p2 = parser_of_tree entry nlevn alevn bro in
      parser [ [: a = entry.estart alevn :] -> app act a | [: a = p2 :] -> a ]
  | Node {node = s; son = son; brother = DeadEnd} ->
      let ps = parser_of_symbol entry nlevn s in
      let p1 = parser_of_tree entry nlevn alevn son in
      parser bp
        [: a = ps;
           act =
             parser
             [ [: a = p1 :] -> a
             | [: a =
                    recover parser_of_tree entry nlevn alevn bp a s son :] ->
                 a
             | [: :] ->
                 raise (Stream.Error (tree_failed entry a s son)) ] :] ->
          app act a
  | Node {node = s; son = son; brother = bro} ->
      let ps = parser_of_symbol entry nlevn s in
      let p1 = parser_of_tree entry nlevn alevn son in
      let p2 = parser_of_tree entry nlevn alevn bro in
      parser bp
      [ [: a = ps;
           act =
             parser
             [ [: a = p1 :] -> a
             | [: a =
                    recover parser_of_tree entry nlevn alevn bp a s son :] ->
                 a
             | [: :] ->
                 raise (Stream.Error (tree_failed entry a s son)) ] :] ->
          app act a
      | [: a = p2 :] -> a ] ]
and parser_of_symbol entry nlevn =
  fun
  [ Slist0 s ->
      let ps = parser_of_symbol entry nlevn s in
      let rec loop al =
        parser [ [: a = ps; s :] -> loop [a :: al] s | [: :] -> al ]
      in
      parser [: a = loop [] :] -> Obj.repr (List.rev a)
  | Slist0sep symb sep ->
      let ps = parser_of_symbol entry nlevn symb in
      let pt = parser_of_symbol entry nlevn sep in
      let rec kont al =
        parser
        [ [: v = pt; a = ps ? symb_failed entry v sep symb; s :] ->
            kont [a :: al] s
        | [: :] -> al ]
      in
      parser
      [ [: a = ps; s :] -> Obj.repr (List.rev (kont [a] s))
      | [: :] -> Obj.repr [] ]
  | Slist1 s ->
      let ps = parser_of_symbol entry nlevn s in
      let rec loop al =
        parser [ [: a = ps; s :] -> loop [a :: al] s | [: :] -> al ]
      in
      parser [: a = ps; s :] -> Obj.repr (List.rev (loop [a] s))
  | Slist1sep symb sep ->
      let ps = parser_of_symbol entry nlevn symb in
      let pt = parser_of_symbol entry nlevn sep in
      let rec kont al =
        parser
        [ [: v = pt;
             a =
               parser
               [ [: a = ps :] -> a
               | [: a =
                      parser_of_symbol entry nlevn
                        (top_symb entry symb) :] -> a
               | [: :] ->
                   raise (Stream.Error (symb_failed entry v sep symb)) ];
             s :] ->
            kont [a :: al] s
        | [: :] -> al ]
      in
      parser [: a = ps; s :] -> Obj.repr (List.rev (kont [a] s))
  | Sopt s ->
      let ps = parser_of_symbol entry nlevn s in
      parser [ [: a = ps :] -> Obj.repr (Some a) | [: :] -> Obj.repr None ]
  | Stree t ->
      let pt = parser_of_tree entry 1 0 t in
      parser bp
        [: a = pt :] ep -> let loc = loc_of_token_interval bp ep in app a loc
  | Snterm e -> parser [: a = e.estart 0 :] -> a
  | Snterml e l -> parser [: a = e.estart (level_number e l) :] -> a
  | Sself -> parser [: a = entry.estart 0 :] -> a
  | Snext -> parser [: a = entry.estart nlevn :] -> a
  | Stoken tok ->
      (Obj.magic
         (entry.egram.glexer.Token.tparse tok :
          Stream.t Token.t -> string) :
       Stream.t Token.t -> Obj.t) ]
;

value rec continue_parser_of_levels entry clevn =
  fun
  [ [] -> fun levn bp a -> parser []
  | [lev :: levs] ->
      let p1 = continue_parser_of_levels entry (succ clevn) levs in
      match lev.lsuffix with
      [ DeadEnd -> p1
      | tree ->
          let alevn =
            match lev.assoc with
            [ LeftA | NonA -> succ clevn
            | RightA -> clevn ]
          in
          let p2 = parser_of_tree entry (succ clevn) alevn tree in
          fun levn bp a strm ->
            if levn > clevn then p1 levn bp a strm
            else
              match strm with parser
              [ [: a = p1 levn bp a :] -> a
              | [: act = p2 :] ep ->
                  let a = app act a (loc_of_token_interval bp ep) in
                  entry.econtinue levn bp a strm ] ] ]
;

value rec start_parser_of_levels entry clevn =
  fun
  [ [] -> fun levn -> parser []
  | [lev :: levs] ->
      let p1 = start_parser_of_levels entry (succ clevn) levs in
      match lev.lprefix with
      [ DeadEnd -> p1
      | tree ->
          let alevn =
            match lev.assoc with
            [ LeftA | NonA -> succ clevn
            | RightA -> clevn ]
          in
          let p2 = parser_of_tree entry (succ clevn) alevn tree in
          match levs with
          [ [] ->
              fun levn strm ->
                match strm with parser bp
                [ [: act = p2 :] ep ->
                    let a = app act (loc_of_token_interval bp ep) in
                    entry.econtinue levn bp a strm ]
          | _ ->
              fun levn strm ->
                if levn > clevn then p1 levn strm
                else
                  match strm with parser bp
                  [ [: act = p2 :] ep ->
                      let a = app act (loc_of_token_interval bp ep) in
                      entry.econtinue levn bp a strm
                  | [: a = p1 levn :] -> a ] ] ] ]
;

value continue_parser_of_entry entry =
  match entry.edesc with
  [ Dlevels elev ->
      let p = continue_parser_of_levels entry 0 elev in
      fun levn bp a -> parser [ [: a = p levn bp a :] -> a | [: :] -> a ]
  | Dparser p -> fun levn bp a -> parser [] ]
;

value rec start_parser_of_entry entry =
  match entry.edesc with
  [ Dlevels elev -> start_parser_of_levels entry 0 elev
  | Dparser p -> fun levn strm -> p strm ]
;

value parse_parsable entry efun (cs, (ts, fun_loc)) =
  let restore = let old_floc = floc.val in fun () -> floc.val := old_floc in
  do floc.val := fun_loc; return
  try
    let r = efun ts in
    do restore (); return r
  with exc ->
    let (loc, exc) =
      match exc with
      [ Stream.Failure ->
          (try fun_loc (Stream.count ts) with _ ->
             (Stream.count cs, Stream.count cs + 1),
           Stream.Error ("illegal begin of " ^ entry.ename))
      | Stream.Error _ ->
          (try fun_loc (Stream.count ts) with _ ->
             (Stream.count cs, Stream.count cs + 1),
           exc)
      | exc -> ((Stream.count cs, Stream.count cs + 1), exc) ]
    in
    do restore (); return raise_with_loc loc exc
;

value wrap_parse entry efun cs =
  let parsable = (cs, entry.egram.glexer.Token.func cs) in
  parse_parsable entry efun parsable
;

value create_toktab () = Hashtbl.create 301;
value create lexer = {gtokens = create_toktab (); glexer = lexer};

(* Extend syntax *)

value extend_entry entry position rules =
  try
    let elev = Gramext.levels_of_rules entry position rules in
    do entry.edesc := Dlevels elev;
       entry.estart :=
         fun lev strm ->
           let f = start_parser_of_entry entry in
           do entry.estart := f; return f lev strm;
       entry.econtinue :=
         fun lev bp a strm ->
           let f = continue_parser_of_entry entry in
           do entry.econtinue := f; return f lev bp a strm;
    return ()
  with
  [ Token.Error s ->
      do Printf.eprintf "Lexer initialization error.\n%s\n"
           (String.capitalize s);
         flush stderr;
      return failwith "Grammar.extend" ]
;

value extend entry_rules_list =
  let gram = ref None in
  do List.iter
       (fun (entry, position, rules) ->
          do match gram.val with
             [ Some g ->
                 if g != entry.egram then
                   do Printf.eprintf
                        "Error: entries with different grammars\n";
                      flush stderr;
                   return failwith "Grammar.extend"
                 else ()
             | None -> gram.val := Some entry.egram ];
             extend_entry entry position rules;
          return ())
       entry_rules_list;
  return ()
;

(* Deleting a rule *)

value delete_rule entry sl =
  match entry.edesc with
  [ Dlevels levs ->
      let levs = Gramext.delete_rule_in_level_list entry sl levs in
      do entry.edesc := Dlevels levs;
         entry.estart :=
           fun lev strm ->
             let f = start_parser_of_entry entry in
             do entry.estart := f; return f lev strm;
         entry.econtinue :=
           fun lev bp a strm ->
             let f = continue_parser_of_entry entry in
             do entry.econtinue := f; return f lev bp a strm;
      return ()
  | _ -> () ]
;

(* Unsafe *)

value clear_entry e =
  do e.estart := fun _ -> parser [];
     e.econtinue := fun _ _ _ -> parser [];
     match e.edesc with
     [ Dlevels _ -> e.edesc := Dlevels []
     | Dparser _ -> () ];
  return ()
;

value reinit_gram g lexer =
  do Hashtbl.clear g.gtokens; g.glexer := lexer; return ()
;

module Unsafe =
  struct
    value clear_entry = clear_entry;
    value reinit_gram = reinit_gram;
  end
;

exception EntryFound of g_entry;
value find_entry e s =
  let rec find_levels levs =
    try
      do List.iter
           (fun lev ->
              do find_tree lev.lsuffix; find_tree lev.lprefix; return ())
           levs;
      return raise Not_found
    with
    [ EntryFound e -> e
    | _ -> raise Not_found ]
  and find_symbol =
    fun
    [ Snterm e -> if e.ename = s then raise (EntryFound e) else ()
    | Snterml e _ -> if e.ename = s then raise (EntryFound e) else ()
    | Slist0 s -> find_symbol s
    | Slist0sep s _ -> find_symbol s
    | Slist1 s -> find_symbol s
    | Slist1sep s _ -> find_symbol s
    | Sopt s -> find_symbol s
    | Stree t -> find_tree t
    | _ -> () ]
  and find_tree =
    fun
    [ Node {node = s; brother = bro; son = son} ->
        do find_symbol s; find_tree bro; find_tree son; return ()
    | _ -> () ]
  in
  match e.edesc with
  [ Dlevels levs -> find_levels levs
  | Dparser _ -> raise Not_found ]
;

value of_entry e = e.egram;

module Entry =
  struct
    type e 'a = g_entry;
    value create g n =
      {egram = g; ename = n; estart = fun _ -> parser [];
       econtinue = fun _ _ _ -> parser []; edesc = Dlevels []}
    ;
    value parse (entry : e 'a) cs =
      (Obj.magic (wrap_parse entry (entry.estart 0) cs) : 'a)
    ;
    value parse_token (entry : e 'a) ts =
      (Obj.magic (entry.estart 0 ts) : 'a)
    ;
    value name e = e.ename;
    value of_parser g n (p : Stream.t Token.t -> 'a) =
      ({egram = g; ename = n; estart = fun _ -> (Obj.magic p);
        econtinue = fun _ _ _ -> parser []; edesc = Dparser (Obj.magic p)} :
       e 'a)
    ;
    external obj : e 'a -> Gramext.g_entry = "%identity";
    value print e = print_entry (obj e);
    value find e = Obj.magic (find_entry (obj e));
  end
;

value tokens g con =
  let g = grammar_obj g in
  let list = ref [] in
  do Hashtbl.iter
       (fun (p_con, p_prm) c ->
          if p_con = con then list.val := [(p_prm, c.val) :: list.val]
          else ())
       g.gtokens;
  return list.val
;

value warning_verbose = Gramext.warning_verbose;

(* Functorial interface *)

module type LexerType =
  sig
    value lexer : Token.lexer;
  end
;

module type S =
  sig
    type parsable = 'x;
    value parsable : Stream.t char -> parsable;
    value tokens : string -> list (string * int);
    module Entry :
      sig
        type e 'a = 'x;
        value create : string -> e 'a;
        value parse : e 'a -> parsable -> 'a;
        value parse_token : e 'a -> Stream.t Token.t -> 'a;
        value name : e 'a -> string;
        value of_parser : string -> (Stream.t Token.t -> 'a) -> e 'a;
        value print : e 'a -> unit;
        external obj : e 'a -> Gramext.g_entry = "%identity";
      end;
    module Unsafe :
      sig
        value reinit_gram : Token.lexer -> unit;
        value clear_entry : Entry.e 'a -> unit;
      end;
    value extend :
      Entry.e 'a -> option Gramext.position ->
        list
          (option string * option Gramext.g_assoc *
           list (list Gramext.g_symbol * Gramext.g_action)) ->
        unit;
    value delete_rule : Entry.e 'a -> list Gramext.g_symbol -> unit;
  end
;

module Make (L : LexerType) : S =
  struct
    type parsable =
      (Stream.t char * (Stream.t Token.t * Token.location_function))
    ;
    value gram = create L.lexer;
    value parsable cs = (cs, L.lexer.Token.func cs);
    value tokens = tokens gram;
    module Entry =
      struct
        type e 'a = g_entry;
        value create n =
          {egram = gram; ename = n; estart = fun _ -> parser [];
           econtinue = fun _ _ _ -> parser []; edesc = Dlevels []}
        ;
        value parse (e : e 'a) p =
          (Obj.magic (parse_parsable e (e.estart 0) p) : 'a)
        ;
        value parse_token (e : e 'a) ts =
          (Obj.magic (e.estart 0 ts) : 'a)
        ;
        value name e = e.ename;
        value of_parser n (p : Stream.t Token.t -> 'a) =
          ({egram = gram; ename = n; estart = fun _ -> (Obj.magic p);
            econtinue = fun _ _ _ -> parser [];
            edesc = Dparser (Obj.magic p)} :
           e 'a)
        ;
        external obj : e 'a -> Gramext.g_entry = "%identity";
        value print e = print_entry (obj e);
      end;
    module Unsafe =
      struct
        value reinit_gram = Unsafe.reinit_gram gram;
        value clear_entry = Unsafe.clear_entry;
      end;
    value extend = extend_entry;
    value delete_rule e r = delete_rule (Entry.obj e) r;
  end
;