1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
|
(* camlp4r *)
(***********************************************************************)
(* *)
(* Camlp4 *)
(* *)
(* Daniel de Rauglaudre, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1998 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id: grammar.ml,v 2.2 1999/02/27 11:04:26 ddr Exp $ *)
open Stdpp;
open Gramext;
open Format;
value rec flatten_tree =
fun
[ DeadEnd -> []
| LocAct _ _ -> [[]]
| Node {node = n; brother = b; son = s} ->
List.map (fun l -> [n :: l]) (flatten_tree s) @ flatten_tree b ]
;
value print_str s = print_string ("\"" ^ String.escaped s ^ "\"");
value rec print_symbol =
fun
[ Slist0 s ->
do print_string "LIST0"; print_string " "; print_symbol1 s; return ()
| Slist0sep s t ->
do print_string "LIST0";
print_string " ";
print_symbol1 s;
print_string " SEP ";
print_symbol1 t;
return ()
| Slist1 s ->
do print_string "LIST1"; print_string " "; print_symbol1 s; return ()
| Slist1sep s t ->
do print_string "LIST1";
print_string " ";
print_symbol1 s;
print_string " SEP ";
print_symbol1 t;
return ()
| Sopt s -> do print_string "OPT "; print_symbol1 s; return ()
| Stoken (con, prm) when con <> "" && prm <> "" ->
do print_string con; print_space (); print_str prm; return ()
| Snterml e l ->
do print_string e.ename;
print_space ();
print_string "LEVEL";
print_space ();
print_str l;
return ()
| s -> print_symbol1 s ]
and print_symbol1 =
fun
[ Stoken ("", s) -> print_str s
| Snterm e -> print_string e.ename
| Sself -> print_string "SELF"
| Snext -> print_string "NEXT"
| Stoken (con, "") -> print_string con
| Stree t -> print_level print_space (flatten_tree t)
| s -> do print_string "("; print_symbol s; print_string ")"; return () ]
and print_rule symbols =
do open_hovbox 0; return
let _ =
List.fold_left
(fun sep symbol ->
do sep (); print_symbol symbol; return
fun () -> do print_string ";"; return print_space ())
(fun () -> ()) symbols
in
close_box ()
and print_level print_space rules =
do open_hovbox 0; print_string "[ "; return
let _ =
List.fold_left
(fun sep rule ->
do sep (); print_rule rule; return
fun () -> do print_space (); print_string "| "; return ())
(fun () -> ()) rules
in
do print_string " ]"; close_box (); return ()
;
value print_levels elev =
let _ =
List.fold_left
(fun sep lev ->
let rules =
List.map (fun t -> [Sself :: t]) (flatten_tree lev.lsuffix) @
flatten_tree lev.lprefix
in
do sep ();
open_hovbox 2;
match lev.lname with
[ Some n ->
do print_string ("\"" ^ String.escaped n ^ "\"");
print_break 1 2;
return ()
| _ -> () ];
match lev.assoc with
[ LeftA -> print_string "LEFTA"
| RightA -> print_string "RIGHTA"
| NonA -> print_string "NONA" ];
close_box ();
print_break 1 2;
print_level force_newline rules;
return fun () -> do print_cut (); print_string "| "; return ())
(fun () -> ()) elev
in
()
;
value print_entry e =
do open_vbox 0;
print_string "[ ";
match e.edesc with
[ Dlevels elev -> print_levels elev
| Dparser _ -> print_string "<parser>" ];
print_string " ]";
close_box ();
print_newline ();
return ()
;
type g = Gramext.grammar;
external grammar_obj : g -> grammar = "%identity";
value floc = ref (fun _ -> failwith "internal error when computing location");
value loc_of_token_interval bp ep =
if bp == ep then
if bp == 0 then (0, 1)
else let a = snd (floc.val (bp-1)) in (a, a + 1)
else
let (bp1, bp2) = floc.val bp in
let (ep1, ep2) = floc.val (pred ep) in
(if bp1 < ep1 then bp1 else ep1, if bp2 > ep2 then bp2 else ep2)
;
value rec name_of_symbol entry =
fun
[ Snterm e -> "[" ^ e.ename ^ "]"
| Snterml e l -> "[" ^ e.ename ^ " level " ^ l ^ "]"
| Sself | Snext -> "[" ^ entry.ename ^ "]"
| Stoken tok -> entry.egram.glexer.Token.text tok
| _ -> "???" ]
;
value rec name_of_symbol_failed entry =
fun
[ Slist0 s -> name_of_symbol_failed entry s
| Slist0sep s _ -> name_of_symbol_failed entry s
| Slist1 s -> name_of_symbol_failed entry s
| Slist1sep s _ -> name_of_symbol_failed entry s
| Sopt s -> name_of_symbol_failed entry s
| Stree t -> name_of_tree_failed entry t
| s -> name_of_symbol entry s ]
and name_of_tree_failed entry =
fun
[ Node {node = s; brother = bro; son = son} ->
let txt = name_of_symbol_failed entry s in
let txt =
match (s, son) with
[ (Sopt _, Node _) -> txt ^ " or " ^ name_of_tree_failed entry son
| _ -> txt ]
in
let txt =
match bro with
[ DeadEnd | LocAct _ _ -> txt
| _ -> txt ^ " or " ^ name_of_tree_failed entry bro ]
in
txt
| DeadEnd | LocAct _ _ -> "???" ]
;
value tree_failed entry prev_symb_result prev_symb tree =
let txt = name_of_tree_failed entry tree in
let txt =
match prev_symb with
[ Slist0 s ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| Slist1 s ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| Slist0sep s sep ->
match Obj.magic prev_symb_result with
[ [] ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| _ ->
let txt1 = name_of_symbol_failed entry sep in
txt1 ^ " or " ^ txt ^ " expected" ]
| Slist1sep s sep ->
match Obj.magic prev_symb_result with
[ [] ->
let txt1 = name_of_symbol_failed entry s in
txt1 ^ " or " ^ txt ^ " expected"
| _ ->
let txt1 = name_of_symbol_failed entry sep in
txt1 ^ " or " ^ txt ^ " expected" ]
| Sopt _ | Stree _ -> txt ^ " expected"
| _ -> txt ^ " expected after " ^ name_of_symbol entry prev_symb ]
in
txt ^ " (in [" ^ entry.ename ^ "])"
;
value symb_failed entry prev_symb_result prev_symb symb =
let tree = Node {node = symb; brother = DeadEnd; son = DeadEnd} in
tree_failed entry prev_symb_result prev_symb tree
;
external app : Obj.t -> 'a = "%identity";
value is_level_labelled n lev =
match lev.lname with
[ Some n1 -> n = n1
| None -> False ]
;
value level_number entry lab =
let rec lookup levn =
fun
[ [] -> failwith ("unknown level " ^ lab)
| [lev :: levs] ->
if is_level_labelled lab lev then levn
else lookup (succ levn) levs ]
in
match entry.edesc with
[ Dlevels elev -> lookup 0 elev
| Dparser _ -> raise Not_found ]
;
value rec top_symb entry =
fun
[ Sself | Snext -> Snterm entry
| Snterml e _ -> Snterm e
| Slist1sep s sep -> Slist1sep (top_symb entry s) sep
| _ -> raise Stream.Failure ]
;
value entry_of_symb entry =
fun
[ Sself | Snext -> entry
| Snterm e -> e
| Snterml e _ -> e
| _ -> raise Stream.Failure ]
;
value top_tree entry =
fun
[ Node {node = s; brother = bro; son = son} ->
Node {node = top_symb entry s; brother = bro; son = son}
| _ -> raise Stream.Failure ]
;
value skip_if_empty bp p strm =
if Stream.count strm == bp then Gramext.action (fun a -> p strm)
else raise Stream.Failure
;
value continue entry bp a s son p1 =
parser
[: a = (entry_of_symb entry s).econtinue 0 bp a;
act = p1 ? tree_failed entry a s son :] ->
Gramext.action (fun _ -> app act a)
;
value do_recover parser_of_tree entry nlevn alevn bp a s son =
parser
[ [: a = parser_of_tree entry nlevn alevn (top_tree entry son) :] -> a
| [: a = skip_if_empty bp (parser []) :] -> a
| [: a =
continue entry bp a s son
(parser_of_tree entry nlevn alevn son) :] ->
a ]
;
value strict_parsing = ref False;
value recover parser_of_tree entry nlevn alevn bp a s son strm =
if strict_parsing.val then raise (Stream.Error (tree_failed entry a s son))
else do_recover parser_of_tree entry nlevn alevn bp a s son strm
;
value rec parser_of_tree entry nlevn alevn =
fun
[ DeadEnd -> parser []
| LocAct act _ -> parser [: :] -> act
| Node {node = Sself; son = LocAct act _; brother = DeadEnd} ->
parser [: a = entry.estart alevn :] -> app act a
| Node {node = Sself; son = LocAct act _; brother = bro} ->
let p2 = parser_of_tree entry nlevn alevn bro in
parser [ [: a = entry.estart alevn :] -> app act a | [: a = p2 :] -> a ]
| Node {node = s; son = son; brother = DeadEnd} ->
let ps = parser_of_symbol entry nlevn s in
let p1 = parser_of_tree entry nlevn alevn son in
parser bp
[: a = ps;
act =
parser
[ [: a = p1 :] -> a
| [: a =
recover parser_of_tree entry nlevn alevn bp a s son :] ->
a
| [: :] ->
raise (Stream.Error (tree_failed entry a s son)) ] :] ->
app act a
| Node {node = s; son = son; brother = bro} ->
let ps = parser_of_symbol entry nlevn s in
let p1 = parser_of_tree entry nlevn alevn son in
let p2 = parser_of_tree entry nlevn alevn bro in
parser bp
[ [: a = ps;
act =
parser
[ [: a = p1 :] -> a
| [: a =
recover parser_of_tree entry nlevn alevn bp a s son :] ->
a
| [: :] ->
raise (Stream.Error (tree_failed entry a s son)) ] :] ->
app act a
| [: a = p2 :] -> a ] ]
and parser_of_symbol entry nlevn =
fun
[ Slist0 s ->
let ps = parser_of_symbol entry nlevn s in
let rec loop al =
parser [ [: a = ps; s :] -> loop [a :: al] s | [: :] -> al ]
in
parser [: a = loop [] :] -> Obj.repr (List.rev a)
| Slist0sep symb sep ->
let ps = parser_of_symbol entry nlevn symb in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al =
parser
[ [: v = pt; a = ps ? symb_failed entry v sep symb; s :] ->
kont [a :: al] s
| [: :] -> al ]
in
parser
[ [: a = ps; s :] -> Obj.repr (List.rev (kont [a] s))
| [: :] -> Obj.repr [] ]
| Slist1 s ->
let ps = parser_of_symbol entry nlevn s in
let rec loop al =
parser [ [: a = ps; s :] -> loop [a :: al] s | [: :] -> al ]
in
parser [: a = ps; s :] -> Obj.repr (List.rev (loop [a] s))
| Slist1sep symb sep ->
let ps = parser_of_symbol entry nlevn symb in
let pt = parser_of_symbol entry nlevn sep in
let rec kont al =
parser
[ [: v = pt;
a =
parser
[ [: a = ps :] -> a
| [: a =
parser_of_symbol entry nlevn
(top_symb entry symb) :] -> a
| [: :] ->
raise (Stream.Error (symb_failed entry v sep symb)) ];
s :] ->
kont [a :: al] s
| [: :] -> al ]
in
parser [: a = ps; s :] -> Obj.repr (List.rev (kont [a] s))
| Sopt s ->
let ps = parser_of_symbol entry nlevn s in
parser [ [: a = ps :] -> Obj.repr (Some a) | [: :] -> Obj.repr None ]
| Stree t ->
let pt = parser_of_tree entry 1 0 t in
parser bp
[: a = pt :] ep -> let loc = loc_of_token_interval bp ep in app a loc
| Snterm e -> parser [: a = e.estart 0 :] -> a
| Snterml e l -> parser [: a = e.estart (level_number e l) :] -> a
| Sself -> parser [: a = entry.estart 0 :] -> a
| Snext -> parser [: a = entry.estart nlevn :] -> a
| Stoken tok ->
(Obj.magic
(entry.egram.glexer.Token.tparse tok :
Stream.t Token.t -> string) :
Stream.t Token.t -> Obj.t) ]
;
value rec continue_parser_of_levels entry clevn =
fun
[ [] -> fun levn bp a -> parser []
| [lev :: levs] ->
let p1 = continue_parser_of_levels entry (succ clevn) levs in
match lev.lsuffix with
[ DeadEnd -> p1
| tree ->
let alevn =
match lev.assoc with
[ LeftA | NonA -> succ clevn
| RightA -> clevn ]
in
let p2 = parser_of_tree entry (succ clevn) alevn tree in
fun levn bp a strm ->
if levn > clevn then p1 levn bp a strm
else
match strm with parser
[ [: a = p1 levn bp a :] -> a
| [: act = p2 :] ep ->
let a = app act a (loc_of_token_interval bp ep) in
entry.econtinue levn bp a strm ] ] ]
;
value rec start_parser_of_levels entry clevn =
fun
[ [] -> fun levn -> parser []
| [lev :: levs] ->
let p1 = start_parser_of_levels entry (succ clevn) levs in
match lev.lprefix with
[ DeadEnd -> p1
| tree ->
let alevn =
match lev.assoc with
[ LeftA | NonA -> succ clevn
| RightA -> clevn ]
in
let p2 = parser_of_tree entry (succ clevn) alevn tree in
match levs with
[ [] ->
fun levn strm ->
match strm with parser bp
[ [: act = p2 :] ep ->
let a = app act (loc_of_token_interval bp ep) in
entry.econtinue levn bp a strm ]
| _ ->
fun levn strm ->
if levn > clevn then p1 levn strm
else
match strm with parser bp
[ [: act = p2 :] ep ->
let a = app act (loc_of_token_interval bp ep) in
entry.econtinue levn bp a strm
| [: a = p1 levn :] -> a ] ] ] ]
;
value continue_parser_of_entry entry =
match entry.edesc with
[ Dlevels elev ->
let p = continue_parser_of_levels entry 0 elev in
fun levn bp a -> parser [ [: a = p levn bp a :] -> a | [: :] -> a ]
| Dparser p -> fun levn bp a -> parser [] ]
;
value rec start_parser_of_entry entry =
match entry.edesc with
[ Dlevels elev -> start_parser_of_levels entry 0 elev
| Dparser p -> fun levn strm -> p strm ]
;
value parse_parsable entry efun (cs, (ts, fun_loc)) =
let restore = let old_floc = floc.val in fun () -> floc.val := old_floc in
do floc.val := fun_loc; return
try
let r = efun ts in
do restore (); return r
with exc ->
let (loc, exc) =
match exc with
[ Stream.Failure ->
(try fun_loc (Stream.count ts) with _ ->
(Stream.count cs, Stream.count cs + 1),
Stream.Error ("illegal begin of " ^ entry.ename))
| Stream.Error _ ->
(try fun_loc (Stream.count ts) with _ ->
(Stream.count cs, Stream.count cs + 1),
exc)
| exc -> ((Stream.count cs, Stream.count cs + 1), exc) ]
in
do restore (); return raise_with_loc loc exc
;
value wrap_parse entry efun cs =
let parsable = (cs, entry.egram.glexer.Token.func cs) in
parse_parsable entry efun parsable
;
value create_toktab () = Hashtbl.create 301;
value create lexer = {gtokens = create_toktab (); glexer = lexer};
(* Extend syntax *)
value extend_entry entry position rules =
try
let elev = Gramext.levels_of_rules entry position rules in
do entry.edesc := Dlevels elev;
entry.estart :=
fun lev strm ->
let f = start_parser_of_entry entry in
do entry.estart := f; return f lev strm;
entry.econtinue :=
fun lev bp a strm ->
let f = continue_parser_of_entry entry in
do entry.econtinue := f; return f lev bp a strm;
return ()
with
[ Token.Error s ->
do Printf.eprintf "Lexer initialization error.\n%s\n"
(String.capitalize s);
flush stderr;
return failwith "Grammar.extend" ]
;
value extend entry_rules_list =
let gram = ref None in
do List.iter
(fun (entry, position, rules) ->
do match gram.val with
[ Some g ->
if g != entry.egram then
do Printf.eprintf
"Error: entries with different grammars\n";
flush stderr;
return failwith "Grammar.extend"
else ()
| None -> gram.val := Some entry.egram ];
extend_entry entry position rules;
return ())
entry_rules_list;
return ()
;
(* Deleting a rule *)
value delete_rule entry sl =
match entry.edesc with
[ Dlevels levs ->
let levs = Gramext.delete_rule_in_level_list entry sl levs in
do entry.edesc := Dlevels levs;
entry.estart :=
fun lev strm ->
let f = start_parser_of_entry entry in
do entry.estart := f; return f lev strm;
entry.econtinue :=
fun lev bp a strm ->
let f = continue_parser_of_entry entry in
do entry.econtinue := f; return f lev bp a strm;
return ()
| _ -> () ]
;
(* Unsafe *)
value clear_entry e =
do e.estart := fun _ -> parser [];
e.econtinue := fun _ _ _ -> parser [];
match e.edesc with
[ Dlevels _ -> e.edesc := Dlevels []
| Dparser _ -> () ];
return ()
;
value reinit_gram g lexer =
do Hashtbl.clear g.gtokens; g.glexer := lexer; return ()
;
module Unsafe =
struct
value clear_entry = clear_entry;
value reinit_gram = reinit_gram;
end
;
exception EntryFound of g_entry;
value find_entry e s =
let rec find_levels levs =
try
do List.iter
(fun lev ->
do find_tree lev.lsuffix; find_tree lev.lprefix; return ())
levs;
return raise Not_found
with
[ EntryFound e -> e
| _ -> raise Not_found ]
and find_symbol =
fun
[ Snterm e -> if e.ename = s then raise (EntryFound e) else ()
| Snterml e _ -> if e.ename = s then raise (EntryFound e) else ()
| Slist0 s -> find_symbol s
| Slist0sep s _ -> find_symbol s
| Slist1 s -> find_symbol s
| Slist1sep s _ -> find_symbol s
| Sopt s -> find_symbol s
| Stree t -> find_tree t
| _ -> () ]
and find_tree =
fun
[ Node {node = s; brother = bro; son = son} ->
do find_symbol s; find_tree bro; find_tree son; return ()
| _ -> () ]
in
match e.edesc with
[ Dlevels levs -> find_levels levs
| Dparser _ -> raise Not_found ]
;
value of_entry e = e.egram;
module Entry =
struct
type e 'a = g_entry;
value create g n =
{egram = g; ename = n; estart = fun _ -> parser [];
econtinue = fun _ _ _ -> parser []; edesc = Dlevels []}
;
value parse (entry : e 'a) cs =
(Obj.magic (wrap_parse entry (entry.estart 0) cs) : 'a)
;
value parse_token (entry : e 'a) ts =
(Obj.magic (entry.estart 0 ts) : 'a)
;
value name e = e.ename;
value of_parser g n (p : Stream.t Token.t -> 'a) =
({egram = g; ename = n; estart = fun _ -> (Obj.magic p);
econtinue = fun _ _ _ -> parser []; edesc = Dparser (Obj.magic p)} :
e 'a)
;
external obj : e 'a -> Gramext.g_entry = "%identity";
value print e = print_entry (obj e);
value find e = Obj.magic (find_entry (obj e));
end
;
value tokens g con =
let g = grammar_obj g in
let list = ref [] in
do Hashtbl.iter
(fun (p_con, p_prm) c ->
if p_con = con then list.val := [(p_prm, c.val) :: list.val]
else ())
g.gtokens;
return list.val
;
value warning_verbose = Gramext.warning_verbose;
(* Functorial interface *)
module type LexerType =
sig
value lexer : Token.lexer;
end
;
module type S =
sig
type parsable = 'x;
value parsable : Stream.t char -> parsable;
value tokens : string -> list (string * int);
module Entry :
sig
type e 'a = 'x;
value create : string -> e 'a;
value parse : e 'a -> parsable -> 'a;
value parse_token : e 'a -> Stream.t Token.t -> 'a;
value name : e 'a -> string;
value of_parser : string -> (Stream.t Token.t -> 'a) -> e 'a;
value print : e 'a -> unit;
external obj : e 'a -> Gramext.g_entry = "%identity";
end;
module Unsafe :
sig
value reinit_gram : Token.lexer -> unit;
value clear_entry : Entry.e 'a -> unit;
end;
value extend :
Entry.e 'a -> option Gramext.position ->
list
(option string * option Gramext.g_assoc *
list (list Gramext.g_symbol * Gramext.g_action)) ->
unit;
value delete_rule : Entry.e 'a -> list Gramext.g_symbol -> unit;
end
;
module Make (L : LexerType) : S =
struct
type parsable =
(Stream.t char * (Stream.t Token.t * Token.location_function))
;
value gram = create L.lexer;
value parsable cs = (cs, L.lexer.Token.func cs);
value tokens = tokens gram;
module Entry =
struct
type e 'a = g_entry;
value create n =
{egram = gram; ename = n; estart = fun _ -> parser [];
econtinue = fun _ _ _ -> parser []; edesc = Dlevels []}
;
value parse (e : e 'a) p =
(Obj.magic (parse_parsable e (e.estart 0) p) : 'a)
;
value parse_token (e : e 'a) ts =
(Obj.magic (e.estart 0 ts) : 'a)
;
value name e = e.ename;
value of_parser n (p : Stream.t Token.t -> 'a) =
({egram = gram; ename = n; estart = fun _ -> (Obj.magic p);
econtinue = fun _ _ _ -> parser [];
edesc = Dparser (Obj.magic p)} :
e 'a)
;
external obj : e 'a -> Gramext.g_entry = "%identity";
value print e = print_entry (obj e);
end;
module Unsafe =
struct
value reinit_gram = Unsafe.reinit_gram gram;
value clear_entry = Unsafe.clear_entry;
end;
value extend = extend_entry;
value delete_rule e r = delete_rule (Entry.obj e) r;
end
;
|