1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
(** AVL tree *)
(* Copyright (C) 2003, 2010 Yamagata Yoriyuki. *)
(* This library is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2 of *)
(* the License, or (at your option) any later version. *)
(* As a special exception to the GNU Library General Public License, you *)
(* may link, statically or dynamically, a "work that uses this library" *)
(* with a publicly distributed version of this library to produce an *)
(* executable file containing portions of this library, and distribute *)
(* that executable file under terms of your choice, without any of the *)
(* additional requirements listed in clause 6 of the GNU Library General *)
(* Public License. By "a publicly distributed version of this library", *)
(* we mean either the unmodified Library as distributed by the authors, *)
(* or a modified version of this library that is distributed under the *)
(* conditions defined in clause 3 of the GNU Library General Public *)
(* License. This exception does not however invalidate any other reasons *)
(* why the executable file might be covered by the GNU Library General *)
(* Public License . *)
(* This library is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *)
(* Lesser General Public License for more details. *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this library; if not, write to the Free Software *)
(* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *)
(* USA *)
(* You can contact the authour by sending email to *)
(* yori@users.sourceforge.net *)
type 'a tree = Empty | Node of 'a tree * 'a * 'a tree * int
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let singleton_tree x = Node (Empty, x, Empty, 1)
let left_branch = function
Empty -> raise Not_found
| Node (l, _, _, _) -> l
let right_branch = function
Empty -> raise Not_found
| Node (_, _, r, _) -> r
let root = function
Empty -> raise Not_found
| Node (_, v, _, _) -> v
let height = function
Empty -> 0
| Node (_, _, _, h) -> h
let create l v r =
let h' = 1 + max (height l) (height r) in
assert(abs (height l - height r ) < 2);
Node (l, v, r, h')
(* Assume |hl - hr| < 3 *)
let rec bal l v r =
let hl = height l in
let hr = height r in
if hl >= hr + 2 then
match l with
Empty -> assert false
| Node (ll, lv, lr, _) ->
if height ll >= height lr then
create ll lv (create lr v r)
else
match lr with
Empty -> assert false
| Node (lrl, lrv, lrr, _) ->
create (create ll lv lrl) lrv (create lrr v r)
else if hr >= hl + 2 then
match r with
Empty -> assert false
| Node (rl, rv, rr, _) ->
if height rr >= height rl then
create (create l v rl) rv rr
else
match rl with
Empty -> assert false
| Node (rll, rlv, rlr, _) ->
create (create l v rll) rlv (create rlr rv rr)
else
create l v r
let rec add_left v = function
Empty -> Node(Empty, v, Empty, 1)
| Node(l, v', r, _) -> bal (add_left v l) v' r
let rec add_right v = function
Empty -> Node(Empty, v, Empty, 1)
| Node(l, v', r, _) -> bal l v' (add_right v r)
(* No assumption of height of l and r. *)
let rec make_tree l v r =
match l , r with
Empty, _ -> add_left v r
| _, Empty -> add_right v l
| Node(ll, lv, lr, lh), Node(rl, rv, rr, rh) ->
if lh > rh + 1 then bal ll lv (make_tree lr v r) else
if rh > lh + 1 then bal (make_tree l v rl) rv rr else
create l v r
(* Utilities *)
let rec split_leftmost = function
Empty -> raise Not_found
| Node (Empty, v, r, _) -> (v, r)
| Node (l, v, r, _) ->
let v0, l' = split_leftmost l in
(v0, make_tree l' v r)
let rec split_rightmost = function
Empty -> raise Not_found
| Node (l, v, Empty, _) -> (v, l)
| Node (l, v, r, _) ->
let v0, r' = split_rightmost r in
(v0, make_tree l v r')
let rec concat t1 t2 =
match t1, t2 with
Empty, _ -> t2
| _, Empty -> t1
| Node (l1, v1, r1, h1), Node (l2, v2, r2, h2) ->
if h1 < h2 then
make_tree (concat t1 l2) v2 r2
else
make_tree l1 v1 (concat r1 t2)
let rec iter proc = function
Empty -> ()
| Node (l, v, r, _) ->
iter proc l;
proc v;
iter proc r
let rec fold f t init =
match t with
Empty -> init
| Node (l, v, r, _) ->
let x = fold f l init in
let x = f v x in
fold f r x
|