1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
/*
dsp/complex.h
Copyright 2003-12 tim goetze <tim@quitte.de>
http://quitte.de/dsp/
complex algebra
*/
/*
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 3
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA or point your web browser to http://www.gnu.org.
*/
#ifndef COMPLEX_H
#define COMPLEX_H
namespace DSP {
class complex
{
public:
double re, im;
complex() { }
complex (double r, double i=0) { re = r; im = i; }
void operator = (double r) { re = r; im = 0; }
double abs() { return sqrt(_squared()); }
double _squared() { return re*re + im*im; }
static inline complex polar (double phi, double mag=1)
{ return complex (mag*cos(phi), mag*sin(phi)); }
inline complex exp()
{
double r = ::exp(re);
return complex (r*cos(im), r*sin(im));
}
inline complex conj()
{ return complex (re,-im); }
};
inline complex
operator * (double a, complex z)
{
z.re *= a;
z.im *= a;
return z;
}
inline complex
operator * (complex z1, complex z2)
{
return complex (
z1.re * z2.re - z1.im * z2.im,
z1.re * z2.im + z1.im * z2.re);
}
inline complex
operator / (complex z1, complex z2)
{
double m = z2.re * z2.re + z2.im * z2.im;
return complex (
((z1.re * z2.re) + (z1.im * z2.im)) / m,
((z1.re * z2.im) - (z1.im * z2.re)) / m);
}
inline complex
operator / (complex z, double a)
{
z.re /= a;
z.im /= a;
return z;
}
inline void
operator /= (complex &z, double a)
{
z = z / a;
}
inline complex
operator + (complex z1, complex z2)
{
z1.re += z2.re;
z1.im += z2.im;
return z1;
}
inline complex
operator - (complex z1, complex z2)
{
z1.re -= z2.re;
z1.im -= z2.im;
return z1;
}
inline complex
operator - (complex z)
{
return 0.0 - z;
}
/* */
inline complex
expj (double theta)
{
return complex (cos (theta), sin (theta));
}
inline double
hypot (complex z)
{
return ::hypot (z.im, z.re);
}
} /* namespace DSP */
#endif /* COMPLEX_H */
|