1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
|
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
// MCInsts.
//
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
// 64-bit X86 instruction sets. The main decode sequence for an assembly
// instruction in this disassembler is:
//
// 1. Read the prefix bytes and determine the attributes of the instruction.
// These attributes, recorded in enum attributeBits
// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
// provides a mapping from bitmasks to contexts, which are represented by
// enum InstructionContext (ibid.).
//
// 2. Read the opcode, and determine what kind of opcode it is. The
// disassembler distinguishes four kinds of opcodes, which are enumerated in
// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
//
// 3. Depending on the opcode type, look in one of four ClassDecision structures
// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
// a ModRMDecision (ibid.).
//
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
// ModR/M byte is required and how to interpret it.
//
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
// meanings of its operands.
//
// 6. For each operand, its encoding is an entry from OperandEncoding
// (X86DisassemblerDecoderCommon.h) and its type is an entry from
// OperandType (ibid.). The encoding indicates how to read it from the
// instruction; the type indicates how to interpret the value once it has
// been read. For example, a register operand could be stored in the R/M
// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
// register, for instance). Given this information, the operands can be
// extracted and interpreted.
//
// 7. As the last step, the disassembler translates the instruction information
// and operands into a format understandable by the client - in this case, an
// MCInst for use by the MC infrastructure.
//
// The disassembler is broken broadly into two parts: the table emitter that
// emits the instruction decode tables discussed above during compilation, and
// the disassembler itself. The table emitter is documented in more detail in
// utils/TableGen/X86DisassemblerEmitter.h.
//
// X86Disassembler.cpp contains the code responsible for step 7, and for
// invoking the decoder to execute steps 1-6.
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
// table emitter and the disassembler.
// X86DisassemblerDecoder.h contains the public interface of the decoder,
// factored out into C for possible use by other projects.
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
// responsible for steps 1-6.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
#ifdef CAPSTONE_HAS_X86
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#pragma warning(disable:4996) // disable MSVC's warning on strncpy()
#pragma warning(disable:28719) // disable MSVC's warning on strncpy()
#endif
#include <capstone/platform.h>
#if defined(CAPSTONE_HAS_OSXKERNEL)
#include <Availability.h>
#endif
#include <string.h>
#include "../../cs_priv.h"
#include "X86BaseInfo.h"
#include "X86Disassembler.h"
#include "X86DisassemblerDecoderCommon.h"
#include "X86DisassemblerDecoder.h"
#include "../../MCInst.h"
#include "../../utils.h"
#include "X86Mapping.h"
#define GET_REGINFO_ENUM
#define GET_REGINFO_MC_DESC
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_ENUM
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenInstrInfo_reduce.inc"
#else
#include "X86GenInstrInfo.inc"
#endif
// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
enum {
X86_BX_SI = 500,
X86_BX_DI = 501,
X86_BP_SI = 502,
X86_BP_DI = 503,
X86_sib = 504,
X86_sib64 = 505
};
//
// Private code that translates from struct InternalInstructions to MCInsts.
//
/// translateRegister - Translates an internal register to the appropriate LLVM
/// register, and appends it as an operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param reg - The Reg to append.
static void translateRegister(MCInst *mcInst, Reg reg)
{
#define ENTRY(x) X86_##x,
static const uint16_t llvmRegnums[] = {
ALL_REGS
0
};
#undef ENTRY
uint16_t llvmRegnum = llvmRegnums[reg];
MCOperand_CreateReg0(mcInst, llvmRegnum);
}
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
0, // SEG_OVERRIDE_NONE
X86_CS,
X86_SS,
X86_DS,
X86_ES,
X86_FS,
X86_GS
};
/// translateSrcIndex - Appends a source index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateSrcIndex(MCInst *mcInst, InternalInstruction *insn)
{
unsigned baseRegNo;
if (insn->mode == MODE_64BIT)
baseRegNo = insn->hasAdSize ? X86_ESI : X86_RSI;
else if (insn->mode == MODE_32BIT)
baseRegNo = insn->hasAdSize ? X86_SI : X86_ESI;
else {
// assert(insn->mode == MODE_16BIT);
baseRegNo = insn->hasAdSize ? X86_ESI : X86_SI;
}
MCOperand_CreateReg0(mcInst, baseRegNo);
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
return false;
}
/// translateDstIndex - Appends a destination index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateDstIndex(MCInst *mcInst, InternalInstruction *insn)
{
unsigned baseRegNo;
if (insn->mode == MODE_64BIT)
baseRegNo = insn->hasAdSize ? X86_EDI : X86_RDI;
else if (insn->mode == MODE_32BIT)
baseRegNo = insn->hasAdSize ? X86_DI : X86_EDI;
else {
// assert(insn->mode == MODE_16BIT);
baseRegNo = insn->hasAdSize ? X86_EDI : X86_DI;
}
MCOperand_CreateReg0(mcInst, baseRegNo);
return false;
}
/// translateImmediate - Appends an immediate operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param immediate - The immediate value to append.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
static void translateImmediate(MCInst *mcInst, uint64_t immediate,
const OperandSpecifier *operand, InternalInstruction *insn)
{
OperandType type;
type = (OperandType)operand->type;
if (type == TYPE_REL) {
//isBranch = true;
//pcrel = insn->startLocation + insn->immediateOffset + insn->immediateSize;
switch (operand->encoding) {
default:
break;
case ENCODING_Iv:
switch (insn->displacementSize) {
default:
break;
case 1:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case 2:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case 4:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case 8:
break;
}
break;
case ENCODING_IB:
if (immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if (immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if (immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
}
} // By default sign-extend all X86 immediates based on their encoding.
else if (type == TYPE_IMM) {
switch (operand->encoding) {
default:
break;
case ENCODING_IB:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case ENCODING_IO:
break;
}
} else if (type == TYPE_IMM3) {
#ifndef CAPSTONE_X86_REDUCE
// Check for immediates that printSSECC can't handle.
if (immediate >= 8) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: break; // never reach
case X86_CMPPDrmi: NewOpc = X86_CMPPDrmi_alt; break;
case X86_CMPPDrri: NewOpc = X86_CMPPDrri_alt; break;
case X86_CMPPSrmi: NewOpc = X86_CMPPSrmi_alt; break;
case X86_CMPPSrri: NewOpc = X86_CMPPSrri_alt; break;
case X86_CMPSDrm: NewOpc = X86_CMPSDrm_alt; break;
case X86_CMPSDrr: NewOpc = X86_CMPSDrr_alt; break;
case X86_CMPSSrm: NewOpc = X86_CMPSSrm_alt; break;
case X86_CMPSSrr: NewOpc = X86_CMPSSrr_alt; break;
case X86_VPCOMBri: NewOpc = X86_VPCOMBri_alt; break;
case X86_VPCOMBmi: NewOpc = X86_VPCOMBmi_alt; break;
case X86_VPCOMWri: NewOpc = X86_VPCOMWri_alt; break;
case X86_VPCOMWmi: NewOpc = X86_VPCOMWmi_alt; break;
case X86_VPCOMDri: NewOpc = X86_VPCOMDri_alt; break;
case X86_VPCOMDmi: NewOpc = X86_VPCOMDmi_alt; break;
case X86_VPCOMQri: NewOpc = X86_VPCOMQri_alt; break;
case X86_VPCOMQmi: NewOpc = X86_VPCOMQmi_alt; break;
case X86_VPCOMUBri: NewOpc = X86_VPCOMUBri_alt; break;
case X86_VPCOMUBmi: NewOpc = X86_VPCOMUBmi_alt; break;
case X86_VPCOMUWri: NewOpc = X86_VPCOMUWri_alt; break;
case X86_VPCOMUWmi: NewOpc = X86_VPCOMUWmi_alt; break;
case X86_VPCOMUDri: NewOpc = X86_VPCOMUDri_alt; break;
case X86_VPCOMUDmi: NewOpc = X86_VPCOMUDmi_alt; break;
case X86_VPCOMUQri: NewOpc = X86_VPCOMUQri_alt; break;
case X86_VPCOMUQmi: NewOpc = X86_VPCOMUQmi_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
} else if (type == TYPE_IMM5) {
#ifndef CAPSTONE_X86_REDUCE
// Check for immediates that printAVXCC can't handle.
if (immediate >= 32) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: break; // unexpected opcode
case X86_VCMPPDrmi: NewOpc = X86_VCMPPDrmi_alt; break;
case X86_VCMPPDrri: NewOpc = X86_VCMPPDrri_alt; break;
case X86_VCMPPSrmi: NewOpc = X86_VCMPPSrmi_alt; break;
case X86_VCMPPSrri: NewOpc = X86_VCMPPSrri_alt; break;
case X86_VCMPSDrm: NewOpc = X86_VCMPSDrm_alt; break;
case X86_VCMPSDrr: NewOpc = X86_VCMPSDrr_alt; break;
case X86_VCMPSSrm: NewOpc = X86_VCMPSSrm_alt; break;
case X86_VCMPSSrr: NewOpc = X86_VCMPSSrr_alt; break;
case X86_VCMPPDYrmi: NewOpc = X86_VCMPPDYrmi_alt; break;
case X86_VCMPPDYrri: NewOpc = X86_VCMPPDYrri_alt; break;
case X86_VCMPPSYrmi: NewOpc = X86_VCMPPSYrmi_alt; break;
case X86_VCMPPSYrri: NewOpc = X86_VCMPPSYrri_alt; break;
case X86_VCMPPDZrmi: NewOpc = X86_VCMPPDZrmi_alt; break;
case X86_VCMPPDZrri: NewOpc = X86_VCMPPDZrri_alt; break;
case X86_VCMPPDZrrib: NewOpc = X86_VCMPPDZrrib_alt; break;
case X86_VCMPPSZrmi: NewOpc = X86_VCMPPSZrmi_alt; break;
case X86_VCMPPSZrri: NewOpc = X86_VCMPPSZrri_alt; break;
case X86_VCMPPSZrrib: NewOpc = X86_VCMPPSZrrib_alt; break;
case X86_VCMPPDZ128rmi: NewOpc = X86_VCMPPDZ128rmi_alt; break;
case X86_VCMPPDZ128rri: NewOpc = X86_VCMPPDZ128rri_alt; break;
case X86_VCMPPSZ128rmi: NewOpc = X86_VCMPPSZ128rmi_alt; break;
case X86_VCMPPSZ128rri: NewOpc = X86_VCMPPSZ128rri_alt; break;
case X86_VCMPPDZ256rmi: NewOpc = X86_VCMPPDZ256rmi_alt; break;
case X86_VCMPPDZ256rri: NewOpc = X86_VCMPPDZ256rri_alt; break;
case X86_VCMPPSZ256rmi: NewOpc = X86_VCMPPSZ256rmi_alt; break;
case X86_VCMPPSZ256rri: NewOpc = X86_VCMPPSZ256rri_alt; break;
case X86_VCMPSDZrm_Int: NewOpc = X86_VCMPSDZrmi_alt; break;
case X86_VCMPSDZrr_Int: NewOpc = X86_VCMPSDZrri_alt; break;
case X86_VCMPSDZrrb_Int: NewOpc = X86_VCMPSDZrrb_alt; break;
case X86_VCMPSSZrm_Int: NewOpc = X86_VCMPSSZrmi_alt; break;
case X86_VCMPSSZrr_Int: NewOpc = X86_VCMPSSZrri_alt; break;
case X86_VCMPSSZrrb_Int: NewOpc = X86_VCMPSSZrrb_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
} else if (type == TYPE_AVX512ICC) {
#ifndef CAPSTONE_X86_REDUCE
if (immediate >= 8 || ((immediate & 0x3) == 3)) {
unsigned NewOpc = 0;
switch (MCInst_getOpcode(mcInst)) {
default: // llvm_unreachable("unexpected opcode");
case X86_VPCMPBZ128rmi: NewOpc = X86_VPCMPBZ128rmi_alt; break;
case X86_VPCMPBZ128rmik: NewOpc = X86_VPCMPBZ128rmik_alt; break;
case X86_VPCMPBZ128rri: NewOpc = X86_VPCMPBZ128rri_alt; break;
case X86_VPCMPBZ128rrik: NewOpc = X86_VPCMPBZ128rrik_alt; break;
case X86_VPCMPBZ256rmi: NewOpc = X86_VPCMPBZ256rmi_alt; break;
case X86_VPCMPBZ256rmik: NewOpc = X86_VPCMPBZ256rmik_alt; break;
case X86_VPCMPBZ256rri: NewOpc = X86_VPCMPBZ256rri_alt; break;
case X86_VPCMPBZ256rrik: NewOpc = X86_VPCMPBZ256rrik_alt; break;
case X86_VPCMPBZrmi: NewOpc = X86_VPCMPBZrmi_alt; break;
case X86_VPCMPBZrmik: NewOpc = X86_VPCMPBZrmik_alt; break;
case X86_VPCMPBZrri: NewOpc = X86_VPCMPBZrri_alt; break;
case X86_VPCMPBZrrik: NewOpc = X86_VPCMPBZrrik_alt; break;
case X86_VPCMPDZ128rmi: NewOpc = X86_VPCMPDZ128rmi_alt; break;
case X86_VPCMPDZ128rmib: NewOpc = X86_VPCMPDZ128rmib_alt; break;
case X86_VPCMPDZ128rmibk: NewOpc = X86_VPCMPDZ128rmibk_alt; break;
case X86_VPCMPDZ128rmik: NewOpc = X86_VPCMPDZ128rmik_alt; break;
case X86_VPCMPDZ128rri: NewOpc = X86_VPCMPDZ128rri_alt; break;
case X86_VPCMPDZ128rrik: NewOpc = X86_VPCMPDZ128rrik_alt; break;
case X86_VPCMPDZ256rmi: NewOpc = X86_VPCMPDZ256rmi_alt; break;
case X86_VPCMPDZ256rmib: NewOpc = X86_VPCMPDZ256rmib_alt; break;
case X86_VPCMPDZ256rmibk: NewOpc = X86_VPCMPDZ256rmibk_alt; break;
case X86_VPCMPDZ256rmik: NewOpc = X86_VPCMPDZ256rmik_alt; break;
case X86_VPCMPDZ256rri: NewOpc = X86_VPCMPDZ256rri_alt; break;
case X86_VPCMPDZ256rrik: NewOpc = X86_VPCMPDZ256rrik_alt; break;
case X86_VPCMPDZrmi: NewOpc = X86_VPCMPDZrmi_alt; break;
case X86_VPCMPDZrmib: NewOpc = X86_VPCMPDZrmib_alt; break;
case X86_VPCMPDZrmibk: NewOpc = X86_VPCMPDZrmibk_alt; break;
case X86_VPCMPDZrmik: NewOpc = X86_VPCMPDZrmik_alt; break;
case X86_VPCMPDZrri: NewOpc = X86_VPCMPDZrri_alt; break;
case X86_VPCMPDZrrik: NewOpc = X86_VPCMPDZrrik_alt; break;
case X86_VPCMPQZ128rmi: NewOpc = X86_VPCMPQZ128rmi_alt; break;
case X86_VPCMPQZ128rmib: NewOpc = X86_VPCMPQZ128rmib_alt; break;
case X86_VPCMPQZ128rmibk: NewOpc = X86_VPCMPQZ128rmibk_alt; break;
case X86_VPCMPQZ128rmik: NewOpc = X86_VPCMPQZ128rmik_alt; break;
case X86_VPCMPQZ128rri: NewOpc = X86_VPCMPQZ128rri_alt; break;
case X86_VPCMPQZ128rrik: NewOpc = X86_VPCMPQZ128rrik_alt; break;
case X86_VPCMPQZ256rmi: NewOpc = X86_VPCMPQZ256rmi_alt; break;
case X86_VPCMPQZ256rmib: NewOpc = X86_VPCMPQZ256rmib_alt; break;
case X86_VPCMPQZ256rmibk: NewOpc = X86_VPCMPQZ256rmibk_alt; break;
case X86_VPCMPQZ256rmik: NewOpc = X86_VPCMPQZ256rmik_alt; break;
case X86_VPCMPQZ256rri: NewOpc = X86_VPCMPQZ256rri_alt; break;
case X86_VPCMPQZ256rrik: NewOpc = X86_VPCMPQZ256rrik_alt; break;
case X86_VPCMPQZrmi: NewOpc = X86_VPCMPQZrmi_alt; break;
case X86_VPCMPQZrmib: NewOpc = X86_VPCMPQZrmib_alt; break;
case X86_VPCMPQZrmibk: NewOpc = X86_VPCMPQZrmibk_alt; break;
case X86_VPCMPQZrmik: NewOpc = X86_VPCMPQZrmik_alt; break;
case X86_VPCMPQZrri: NewOpc = X86_VPCMPQZrri_alt; break;
case X86_VPCMPQZrrik: NewOpc = X86_VPCMPQZrrik_alt; break;
case X86_VPCMPUBZ128rmi: NewOpc = X86_VPCMPUBZ128rmi_alt; break;
case X86_VPCMPUBZ128rmik: NewOpc = X86_VPCMPUBZ128rmik_alt; break;
case X86_VPCMPUBZ128rri: NewOpc = X86_VPCMPUBZ128rri_alt; break;
case X86_VPCMPUBZ128rrik: NewOpc = X86_VPCMPUBZ128rrik_alt; break;
case X86_VPCMPUBZ256rmi: NewOpc = X86_VPCMPUBZ256rmi_alt; break;
case X86_VPCMPUBZ256rmik: NewOpc = X86_VPCMPUBZ256rmik_alt; break;
case X86_VPCMPUBZ256rri: NewOpc = X86_VPCMPUBZ256rri_alt; break;
case X86_VPCMPUBZ256rrik: NewOpc = X86_VPCMPUBZ256rrik_alt; break;
case X86_VPCMPUBZrmi: NewOpc = X86_VPCMPUBZrmi_alt; break;
case X86_VPCMPUBZrmik: NewOpc = X86_VPCMPUBZrmik_alt; break;
case X86_VPCMPUBZrri: NewOpc = X86_VPCMPUBZrri_alt; break;
case X86_VPCMPUBZrrik: NewOpc = X86_VPCMPUBZrrik_alt; break;
case X86_VPCMPUDZ128rmi: NewOpc = X86_VPCMPUDZ128rmi_alt; break;
case X86_VPCMPUDZ128rmib: NewOpc = X86_VPCMPUDZ128rmib_alt; break;
case X86_VPCMPUDZ128rmibk: NewOpc = X86_VPCMPUDZ128rmibk_alt; break;
case X86_VPCMPUDZ128rmik: NewOpc = X86_VPCMPUDZ128rmik_alt; break;
case X86_VPCMPUDZ128rri: NewOpc = X86_VPCMPUDZ128rri_alt; break;
case X86_VPCMPUDZ128rrik: NewOpc = X86_VPCMPUDZ128rrik_alt; break;
case X86_VPCMPUDZ256rmi: NewOpc = X86_VPCMPUDZ256rmi_alt; break;
case X86_VPCMPUDZ256rmib: NewOpc = X86_VPCMPUDZ256rmib_alt; break;
case X86_VPCMPUDZ256rmibk: NewOpc = X86_VPCMPUDZ256rmibk_alt; break;
case X86_VPCMPUDZ256rmik: NewOpc = X86_VPCMPUDZ256rmik_alt; break;
case X86_VPCMPUDZ256rri: NewOpc = X86_VPCMPUDZ256rri_alt; break;
case X86_VPCMPUDZ256rrik: NewOpc = X86_VPCMPUDZ256rrik_alt; break;
case X86_VPCMPUDZrmi: NewOpc = X86_VPCMPUDZrmi_alt; break;
case X86_VPCMPUDZrmib: NewOpc = X86_VPCMPUDZrmib_alt; break;
case X86_VPCMPUDZrmibk: NewOpc = X86_VPCMPUDZrmibk_alt; break;
case X86_VPCMPUDZrmik: NewOpc = X86_VPCMPUDZrmik_alt; break;
case X86_VPCMPUDZrri: NewOpc = X86_VPCMPUDZrri_alt; break;
case X86_VPCMPUDZrrik: NewOpc = X86_VPCMPUDZrrik_alt; break;
case X86_VPCMPUQZ128rmi: NewOpc = X86_VPCMPUQZ128rmi_alt; break;
case X86_VPCMPUQZ128rmib: NewOpc = X86_VPCMPUQZ128rmib_alt; break;
case X86_VPCMPUQZ128rmibk: NewOpc = X86_VPCMPUQZ128rmibk_alt; break;
case X86_VPCMPUQZ128rmik: NewOpc = X86_VPCMPUQZ128rmik_alt; break;
case X86_VPCMPUQZ128rri: NewOpc = X86_VPCMPUQZ128rri_alt; break;
case X86_VPCMPUQZ128rrik: NewOpc = X86_VPCMPUQZ128rrik_alt; break;
case X86_VPCMPUQZ256rmi: NewOpc = X86_VPCMPUQZ256rmi_alt; break;
case X86_VPCMPUQZ256rmib: NewOpc = X86_VPCMPUQZ256rmib_alt; break;
case X86_VPCMPUQZ256rmibk: NewOpc = X86_VPCMPUQZ256rmibk_alt; break;
case X86_VPCMPUQZ256rmik: NewOpc = X86_VPCMPUQZ256rmik_alt; break;
case X86_VPCMPUQZ256rri: NewOpc = X86_VPCMPUQZ256rri_alt; break;
case X86_VPCMPUQZ256rrik: NewOpc = X86_VPCMPUQZ256rrik_alt; break;
case X86_VPCMPUQZrmi: NewOpc = X86_VPCMPUQZrmi_alt; break;
case X86_VPCMPUQZrmib: NewOpc = X86_VPCMPUQZrmib_alt; break;
case X86_VPCMPUQZrmibk: NewOpc = X86_VPCMPUQZrmibk_alt; break;
case X86_VPCMPUQZrmik: NewOpc = X86_VPCMPUQZrmik_alt; break;
case X86_VPCMPUQZrri: NewOpc = X86_VPCMPUQZrri_alt; break;
case X86_VPCMPUQZrrik: NewOpc = X86_VPCMPUQZrrik_alt; break;
case X86_VPCMPUWZ128rmi: NewOpc = X86_VPCMPUWZ128rmi_alt; break;
case X86_VPCMPUWZ128rmik: NewOpc = X86_VPCMPUWZ128rmik_alt; break;
case X86_VPCMPUWZ128rri: NewOpc = X86_VPCMPUWZ128rri_alt; break;
case X86_VPCMPUWZ128rrik: NewOpc = X86_VPCMPUWZ128rrik_alt; break;
case X86_VPCMPUWZ256rmi: NewOpc = X86_VPCMPUWZ256rmi_alt; break;
case X86_VPCMPUWZ256rmik: NewOpc = X86_VPCMPUWZ256rmik_alt; break;
case X86_VPCMPUWZ256rri: NewOpc = X86_VPCMPUWZ256rri_alt; break;
case X86_VPCMPUWZ256rrik: NewOpc = X86_VPCMPUWZ256rrik_alt; break;
case X86_VPCMPUWZrmi: NewOpc = X86_VPCMPUWZrmi_alt; break;
case X86_VPCMPUWZrmik: NewOpc = X86_VPCMPUWZrmik_alt; break;
case X86_VPCMPUWZrri: NewOpc = X86_VPCMPUWZrri_alt; break;
case X86_VPCMPUWZrrik: NewOpc = X86_VPCMPUWZrrik_alt; break;
case X86_VPCMPWZ128rmi: NewOpc = X86_VPCMPWZ128rmi_alt; break;
case X86_VPCMPWZ128rmik: NewOpc = X86_VPCMPWZ128rmik_alt; break;
case X86_VPCMPWZ128rri: NewOpc = X86_VPCMPWZ128rri_alt; break;
case X86_VPCMPWZ128rrik: NewOpc = X86_VPCMPWZ128rrik_alt; break;
case X86_VPCMPWZ256rmi: NewOpc = X86_VPCMPWZ256rmi_alt; break;
case X86_VPCMPWZ256rmik: NewOpc = X86_VPCMPWZ256rmik_alt; break;
case X86_VPCMPWZ256rri: NewOpc = X86_VPCMPWZ256rri_alt; break;
case X86_VPCMPWZ256rrik: NewOpc = X86_VPCMPWZ256rrik_alt; break;
case X86_VPCMPWZrmi: NewOpc = X86_VPCMPWZrmi_alt; break;
case X86_VPCMPWZrmik: NewOpc = X86_VPCMPWZrmik_alt; break;
case X86_VPCMPWZrri: NewOpc = X86_VPCMPWZrri_alt; break;
case X86_VPCMPWZrrik: NewOpc = X86_VPCMPWZrrik_alt; break;
}
// Switch opcode to the one that doesn't get special printing.
if (NewOpc != 0) {
MCInst_setOpcode(mcInst, NewOpc);
}
}
#endif
}
switch (type) {
case TYPE_XMM:
MCOperand_CreateReg0(mcInst, X86_XMM0 + ((uint32_t)immediate >> 4));
return;
case TYPE_YMM:
MCOperand_CreateReg0(mcInst, X86_YMM0 + ((uint32_t)immediate >> 4));
return;
case TYPE_ZMM:
MCOperand_CreateReg0(mcInst, X86_ZMM0 + ((uint32_t)immediate >> 4));
return;
default:
// operand is 64 bits wide. Do nothing.
break;
}
MCOperand_CreateImm0(mcInst, immediate);
if (type == TYPE_MOFFS) {
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
}
}
/// translateRMRegister - Translates a register stored in the R/M field of the
/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction to extract the R/M field
/// from.
/// @return - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst *mcInst, InternalInstruction *insn)
{
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
//debug("A R/M register operand may not have a SIB byte");
return true;
}
switch (insn->eaBase) {
case EA_BASE_NONE:
//debug("EA_BASE_NONE for ModR/M base");
return true;
#define ENTRY(x) case EA_BASE_##x:
ALL_EA_BASES
#undef ENTRY
//debug("A R/M register operand may not have a base; "
// "the operand must be a register.");
return true;
#define ENTRY(x) \
case EA_REG_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_REGS
#undef ENTRY
default:
//debug("Unexpected EA base register");
return true;
}
return false;
}
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
/// fields of an internal instruction (and possibly its SIB byte) to a memory
/// operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst *mcInst, InternalInstruction *insn)
{
// Addresses in an MCInst are represented as five operands:
// 1. basereg (register) The R/M base, or (if there is a SIB) the
// SIB base
// 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
// scale amount
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
// the index (which is multiplied by the
// scale amount)
// 4. displacement (immediate) 0, or the displacement if there is one
// 5. segmentreg (register) x86_registerNONE for now, but could be set
// if we have segment overrides
int scaleAmount, indexReg;
if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
if (insn->sibBase != SIB_BASE_NONE) {
switch (insn->sibBase) {
#define ENTRY(x) \
case SIB_BASE_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_SIB_BASES
#undef ENTRY
default:
//debug("Unexpected sibBase");
return true;
}
} else {
MCOperand_CreateReg0(mcInst, 0);
}
if (insn->sibIndex != SIB_INDEX_NONE) {
switch (insn->sibIndex) {
default:
//debug("Unexpected sibIndex");
return true;
#define ENTRY(x) \
case SIB_INDEX_##x: \
indexReg = X86_##x; break;
EA_BASES_32BIT
EA_BASES_64BIT
REGS_XMM
REGS_YMM
REGS_ZMM
#undef ENTRY
}
} else {
// Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
// but no index is used and modrm alone should have been enough.
// -No base register in 32-bit mode. In 64-bit mode this is used to
// avoid rip-relative addressing.
// -Any base register used other than ESP/RSP/R12D/R12. Using these as a
// base always requires a SIB byte.
// -A scale other than 1 is used.
if (insn->sibScale != 1 ||
(insn->sibBase == SIB_BASE_NONE && insn->mode != MODE_64BIT) ||
(insn->sibBase != SIB_BASE_NONE &&
insn->sibBase != SIB_BASE_ESP && insn->sibBase != SIB_BASE_RSP &&
insn->sibBase != SIB_BASE_R12D && insn->sibBase != SIB_BASE_R12)) {
indexReg = insn->addressSize == 4? X86_EIZ : X86_RIZ;
} else
indexReg = 0;
}
scaleAmount = insn->sibScale;
} else {
switch (insn->eaBase) {
case EA_BASE_NONE:
if (insn->eaDisplacement == EA_DISP_NONE) {
//debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
return true;
}
if (insn->mode == MODE_64BIT) {
if (insn->prefix3 == 0x67) // address-size prefix overrides RIP relative addressing
MCOperand_CreateReg0(mcInst, X86_EIP);
else
// Section 2.2.1.6
MCOperand_CreateReg0(mcInst, insn->addressSize == 4 ? X86_EIP : X86_RIP);
} else {
MCOperand_CreateReg0(mcInst, 0);
}
indexReg = 0;
break;
case EA_BASE_BX_SI:
MCOperand_CreateReg0(mcInst, X86_BX);
indexReg = X86_SI;
break;
case EA_BASE_BX_DI:
MCOperand_CreateReg0(mcInst, X86_BX);
indexReg = X86_DI;
break;
case EA_BASE_BP_SI:
MCOperand_CreateReg0(mcInst, X86_BP);
indexReg = X86_SI;
break;
case EA_BASE_BP_DI:
MCOperand_CreateReg0(mcInst, X86_BP);
indexReg = X86_DI;
break;
default:
indexReg = 0;
switch (insn->eaBase) {
default:
//debug("Unexpected eaBase");
return true;
// Here, we will use the fill-ins defined above. However,
// BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
// sib and sib64 were handled in the top-level if, so they're only
// placeholders to keep the compiler happy.
#define ENTRY(x) \
case EA_BASE_##x: \
MCOperand_CreateReg0(mcInst, X86_##x); break;
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
ALL_REGS
#undef ENTRY
//debug("A R/M memory operand may not be a register; "
// "the base field must be a base.");
return true;
}
}
scaleAmount = 1;
}
MCOperand_CreateImm0(mcInst, scaleAmount);
MCOperand_CreateReg0(mcInst, indexReg);
MCOperand_CreateImm0(mcInst, insn->displacement);
MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
return false;
}
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
/// byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRM(MCInst *mcInst, const OperandSpecifier *operand,
InternalInstruction *insn)
{
switch (operand->type) {
default:
//debug("Unexpected type for a R/M operand");
return true;
case TYPE_R8:
case TYPE_R16:
case TYPE_R32:
case TYPE_R64:
case TYPE_Rv:
case TYPE_MM64:
case TYPE_XMM:
case TYPE_YMM:
case TYPE_ZMM:
case TYPE_VK:
case TYPE_DEBUGREG:
case TYPE_CONTROLREG:
case TYPE_BNDR:
return translateRMRegister(mcInst, insn);
case TYPE_M:
case TYPE_MVSIBX:
case TYPE_MVSIBY:
case TYPE_MVSIBZ:
return translateRMMemory(mcInst, insn);
}
}
/// translateFPRegister - Translates a stack position on the FPU stack to its
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param stackPos - The stack position to translate.
static void translateFPRegister(MCInst *mcInst, uint8_t stackPos)
{
MCOperand_CreateReg0(mcInst, X86_ST0 + stackPos);
}
/// translateMaskRegister - Translates a 3-bit mask register number to
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param maskRegNum - Number of mask register from 0 to 7.
/// @return - false on success; true otherwise.
static bool translateMaskRegister(MCInst *mcInst, uint8_t maskRegNum)
{
if (maskRegNum >= 8) {
// debug("Invalid mask register number");
return true;
}
MCOperand_CreateReg0(mcInst, X86_K0 + maskRegNum);
return false;
}
/// translateOperand - Translates an operand stored in an internal instruction
/// to LLVM's format and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateOperand(MCInst *mcInst, const OperandSpecifier *operand, InternalInstruction *insn)
{
switch (operand->encoding) {
case ENCODING_REG:
translateRegister(mcInst, insn->reg);
return false;
case ENCODING_WRITEMASK:
return translateMaskRegister(mcInst, insn->writemask);
CASE_ENCODING_RM:
CASE_ENCODING_VSIB:
return translateRM(mcInst, operand, insn);
case ENCODING_IB:
case ENCODING_IW:
case ENCODING_ID:
case ENCODING_IO:
case ENCODING_Iv:
case ENCODING_Ia:
translateImmediate(mcInst, insn->immediates[insn->numImmediatesTranslated++], operand, insn);
return false;
case ENCODING_IRC:
MCOperand_CreateImm0(mcInst, insn->RC);
return false;
case ENCODING_SI:
return translateSrcIndex(mcInst, insn);
case ENCODING_DI:
return translateDstIndex(mcInst, insn);
case ENCODING_RB:
case ENCODING_RW:
case ENCODING_RD:
case ENCODING_RO:
case ENCODING_Rv:
translateRegister(mcInst, insn->opcodeRegister);
return false;
case ENCODING_FP:
translateFPRegister(mcInst, insn->modRM & 7);
return false;
case ENCODING_VVVV:
translateRegister(mcInst, insn->vvvv);
return false;
case ENCODING_DUP:
return translateOperand(mcInst, &insn->operands[operand->type - TYPE_DUP0], insn);
default:
//debug("Unhandled operand encoding during translation");
return true;
}
}
static bool translateInstruction(MCInst *mcInst, InternalInstruction *insn)
{
int index;
if (!insn->spec) {
//debug("Instruction has no specification");
return true;
}
MCInst_clear(mcInst);
MCInst_setOpcode(mcInst, insn->instructionID);
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
// prefix bytes should be disassembled as xrelease and xacquire then set the
// opcode to those instead of the rep and repne opcodes.
#ifndef CAPSTONE_X86_REDUCE
if (insn->xAcquireRelease) {
if (MCInst_getOpcode(mcInst) == X86_REP_PREFIX)
MCInst_setOpcode(mcInst, X86_XRELEASE_PREFIX);
else if (MCInst_getOpcode(mcInst) == X86_REPNE_PREFIX)
MCInst_setOpcode(mcInst, X86_XACQUIRE_PREFIX);
}
#endif
insn->numImmediatesTranslated = 0;
for (index = 0; index < X86_MAX_OPERANDS; ++index) {
if (insn->operands[index].encoding != ENCODING_NONE) {
if (translateOperand(mcInst, &insn->operands[index], insn)) {
return true;
}
}
}
return false;
}
static int reader(const struct reader_info *info, uint8_t *byte, uint64_t address)
{
if (address - info->offset >= info->size)
// out of buffer range
return -1;
*byte = info->code[address - info->offset];
return 0;
}
// copy x86 detail information from internal structure to public structure
static void update_pub_insn(cs_insn *pub, InternalInstruction *inter)
{
if (inter->vectorExtensionType != 0) {
memcpy(pub->detail->x86.opcode, inter->vectorExtensionPrefix, sizeof(pub->detail->x86.opcode));
} else {
if (inter->twoByteEscape) {
if (inter->threeByteEscape) {
pub->detail->x86.opcode[0] = inter->twoByteEscape;
pub->detail->x86.opcode[1] = inter->threeByteEscape;
pub->detail->x86.opcode[2] = inter->opcode;
} else {
pub->detail->x86.opcode[0] = inter->twoByteEscape;
pub->detail->x86.opcode[1] = inter->opcode;
}
} else {
pub->detail->x86.opcode[0] = inter->opcode;
}
}
pub->detail->x86.rex = inter->rexPrefix;
pub->detail->x86.addr_size = inter->addressSize;
pub->detail->x86.modrm = inter->orgModRM;
pub->detail->x86.encoding.modrm_offset = inter->modRMOffset;
pub->detail->x86.sib = inter->sib;
pub->detail->x86.sib_index = x86_map_sib_index(inter->sibIndex);
pub->detail->x86.sib_scale = inter->sibScale;
pub->detail->x86.sib_base = x86_map_sib_base(inter->sibBase);
pub->detail->x86.disp = inter->displacement;
if (inter->consumedDisplacement) {
pub->detail->x86.encoding.disp_offset = inter->displacementOffset;
pub->detail->x86.encoding.disp_size = inter->displacementSize;
}
pub->detail->x86.encoding.imm_offset = inter->immediateOffset;
if (pub->detail->x86.encoding.imm_size == 0 && inter->immediateOffset != 0)
pub->detail->x86.encoding.imm_size = inter->immediateSize;
}
void X86_init(MCRegisterInfo *MRI)
{
// InitMCRegisterInfo(), X86GenRegisterInfo.inc
// RI->InitMCRegisterInfo(X86RegDesc, 277,
// RA, PC,
// X86MCRegisterClasses, 86,
// X86RegUnitRoots, 162, X86RegDiffLists, X86LaneMaskLists, X86RegStrings,
// X86RegClassStrings,
// X86SubRegIdxLists, 9,
// X86SubRegIdxRanges, X86RegEncodingTable);
/*
InitMCRegisterInfo(X86RegDesc, 234,
RA, PC,
X86MCRegisterClasses, 79,
X86RegUnitRoots, 119, X86RegDiffLists, X86RegStrings,
X86SubRegIdxLists, 7,
X86SubRegIdxRanges, X86RegEncodingTable);
*/
MCRegisterInfo_InitMCRegisterInfo(MRI, X86RegDesc, 277,
0, 0,
X86MCRegisterClasses, 86,
0, 0, X86RegDiffLists, 0,
X86SubRegIdxLists, 9,
0);
}
// Public interface for the disassembler
bool X86_getInstruction(csh ud, const uint8_t *code, size_t code_len,
MCInst *instr, uint16_t *size, uint64_t address, void *_info)
{
cs_struct *handle = (cs_struct *)(uintptr_t)ud;
InternalInstruction insn = { 0 };
struct reader_info info;
int ret;
bool result;
info.code = code;
info.size = code_len;
info.offset = address;
if (instr->flat_insn->detail) {
// instr->flat_insn->detail initialization: 3 alternatives
// 1. The whole structure, this is how it's done in other arch disassemblers
// Probably overkill since cs_detail is huge because of the 36 operands of ARM
//memset(instr->flat_insn->detail, 0, sizeof(cs_detail));
// 2. Only the part relevant to x86
memset(instr->flat_insn->detail, 0, offsetof(cs_detail, x86) + sizeof(cs_x86));
// 3. The relevant part except for x86.operands
// sizeof(cs_x86) is 0x1c0, sizeof(x86.operands) is 0x180
// marginally faster, should be okay since x86.op_count is set to 0
//memset(instr->flat_insn->detail, 0, offsetof(cs_detail, x86)+offsetof(cs_x86, operands));
}
if (handle->mode & CS_MODE_16)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_16BIT);
else if (handle->mode & CS_MODE_32)
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_32BIT);
else
ret = decodeInstruction(&insn,
reader, &info,
address,
MODE_64BIT);
if (ret) {
// *size = (uint16_t)(insn.readerCursor - address);
return false;
} else {
*size = (uint16_t)insn.length;
result = (!translateInstruction(instr, &insn)) ? true : false;
if (result) {
unsigned Flags = X86_IP_NO_PREFIX;
instr->imm_size = insn.immSize;
// copy all prefixes
instr->x86_prefix[0] = insn.prefix0;
instr->x86_prefix[1] = insn.prefix1;
instr->x86_prefix[2] = insn.prefix2;
instr->x86_prefix[3] = insn.prefix3;
instr->xAcquireRelease = insn.xAcquireRelease;
if (handle->detail) {
update_pub_insn(instr->flat_insn, &insn);
}
if (insn.hasAdSize)
Flags |= X86_IP_HAS_AD_SIZE;
if (!insn.mandatoryPrefix) {
if (insn.hasOpSize)
Flags |= X86_IP_HAS_OP_SIZE;
if (insn.repeatPrefix == 0xf2)
Flags |= X86_IP_HAS_REPEAT_NE;
else if (insn.repeatPrefix == 0xf3 &&
// It should not be 'pause' f3 90
insn.opcode != 0x90)
Flags |= X86_IP_HAS_REPEAT;
if (insn.hasLockPrefix)
Flags |= X86_IP_HAS_LOCK;
}
instr->flags = Flags;
}
return result;
}
}
#endif
|