1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
#!/usr/bin/env python
# Capstone Python bindings, by Nguyen Anh Quynnh <aquynh@gmail.com>
from __future__ import print_function
from capstone import *
from capstone.x86 import *
from xprint import to_hex, to_x, to_x_32
X86_CODE64 = b"\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
X86_CODE16 = b"\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00\x05\x23\x01\x00\x00\x36\x8b\x84\x91\x23\x01\x00\x00\x41\x8d\x84\x39\x89\x67\x00\x00\x8d\x87\x89\x67\x00\x00\xb4\xc6\x66\xe9\xb8\x00\x00\x00\x67\xff\xa0\x23\x01\x00\x00\x66\xe8\xcb\x00\x00\x00\x74\xfc"
X86_CODE32 = b"\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00\x05\x23\x01\x00\x00\x36\x8b\x84\x91\x23\x01\x00\x00\x41\x8d\x84\x39\x89\x67\x00\x00\x8d\x87\x89\x67\x00\x00\xb4\xc6\xe9\xea\xbe\xad\xde\xff\xa0\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
all_tests = (
(CS_ARCH_X86, CS_MODE_16, X86_CODE16, "X86 16bit (Intel syntax)", None),
(CS_ARCH_X86, CS_MODE_32, X86_CODE32, "X86 32 (AT&T syntax)", CS_OPT_SYNTAX_ATT),
(CS_ARCH_X86, CS_MODE_32, X86_CODE32, "X86 32 (Intel syntax)", None),
(CS_ARCH_X86, CS_MODE_64, X86_CODE64, "X86 64 (Intel syntax)", None),
)
def get_eflag_name(eflag):
if eflag == X86_EFLAGS_UNDEFINED_OF:
return "UNDEF_OF"
elif eflag == X86_EFLAGS_UNDEFINED_SF:
return "UNDEF_SF"
elif eflag == X86_EFLAGS_UNDEFINED_ZF:
return "UNDEF_ZF"
elif eflag == X86_EFLAGS_MODIFY_AF:
return "MOD_AF"
elif eflag == X86_EFLAGS_UNDEFINED_PF:
return "UNDEF_PF"
elif eflag == X86_EFLAGS_MODIFY_CF:
return "MOD_CF"
elif eflag == X86_EFLAGS_MODIFY_SF:
return "MOD_SF"
elif eflag == X86_EFLAGS_MODIFY_ZF:
return "MOD_ZF"
elif eflag == X86_EFLAGS_UNDEFINED_AF:
return "UNDEF_AF"
elif eflag == X86_EFLAGS_MODIFY_PF:
return "MOD_PF"
elif eflag == X86_EFLAGS_UNDEFINED_CF:
return "UNDEF_CF"
elif eflag == X86_EFLAGS_MODIFY_OF:
return "MOD_OF"
elif eflag == X86_EFLAGS_RESET_OF:
return "RESET_OF"
elif eflag == X86_EFLAGS_RESET_CF:
return "RESET_CF"
elif eflag == X86_EFLAGS_RESET_DF:
return "RESET_DF"
elif eflag == X86_EFLAGS_RESET_IF:
return "RESET_IF"
elif eflag == X86_EFLAGS_TEST_OF:
return "TEST_OF"
elif eflag == X86_EFLAGS_TEST_SF:
return "TEST_SF"
elif eflag == X86_EFLAGS_TEST_ZF:
return "TEST_ZF"
elif eflag == X86_EFLAGS_TEST_PF:
return "TEST_PF"
elif eflag == X86_EFLAGS_TEST_CF:
return "TEST_CF"
elif eflag == X86_EFLAGS_RESET_SF:
return "RESET_SF"
elif eflag == X86_EFLAGS_RESET_AF:
return "RESET_AF"
elif eflag == X86_EFLAGS_RESET_TF:
return "RESET_TF"
elif eflag == X86_EFLAGS_RESET_NT:
return "RESET_NT"
elif eflag == X86_EFLAGS_PRIOR_OF:
return "PRIOR_OF"
elif eflag == X86_EFLAGS_PRIOR_SF:
return "PRIOR_SF"
elif eflag == X86_EFLAGS_PRIOR_ZF:
return "PRIOR_ZF"
elif eflag == X86_EFLAGS_PRIOR_AF:
return "PRIOR_AF"
elif eflag == X86_EFLAGS_PRIOR_PF:
return "PRIOR_PF"
elif eflag == X86_EFLAGS_PRIOR_CF:
return "PRIOR_CF"
elif eflag == X86_EFLAGS_PRIOR_TF:
return "PRIOR_TF"
elif eflag == X86_EFLAGS_PRIOR_IF:
return "PRIOR_IF"
elif eflag == X86_EFLAGS_PRIOR_DF:
return "PRIOR_DF"
elif eflag == X86_EFLAGS_TEST_NT:
return "TEST_NT"
elif eflag == X86_EFLAGS_TEST_DF:
return "TEST_DF"
elif eflag == X86_EFLAGS_RESET_PF:
return "RESET_PF"
elif eflag == X86_EFLAGS_PRIOR_NT:
return "PRIOR_NT"
elif eflag == X86_EFLAGS_MODIFY_TF:
return "MOD_TF"
elif eflag == X86_EFLAGS_MODIFY_IF:
return "MOD_IF"
elif eflag == X86_EFLAGS_MODIFY_DF:
return "MOD_DF"
elif eflag == X86_EFLAGS_MODIFY_NT:
return "MOD_NT"
elif eflag == X86_EFLAGS_MODIFY_RF:
return "MOD_RF"
elif eflag == X86_EFLAGS_SET_CF:
return "SET_CF"
elif eflag == X86_EFLAGS_SET_DF:
return "SET_DF"
elif eflag == X86_EFLAGS_SET_IF:
return "SET_IF"
else:
return None
def print_insn_detail(mode, insn):
def print_string_hex(comment, str):
print(comment, end=' '),
for c in str:
print("0x%02x " % c, end=''),
print()
# print address, mnemonic and operands
print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str))
# "data" instruction generated by SKIPDATA option has no detail
if insn.id == 0:
return
# print instruction prefix
print_string_hex("\tPrefix:", insn.prefix)
# print instruction's opcode
print_string_hex("\tOpcode:", insn.opcode)
# print operand's REX prefix (non-zero value is relavant for x86_64 instructions)
print("\trex: 0x%x" % (insn.rex))
# print operand's address size
print("\taddr_size: %u" % (insn.addr_size))
# print modRM byte
print("\tmodrm: 0x%x" % (insn.modrm))
# print modRM offset
if insn.encoding.modrm_offset != 0:
print("\tmodrm_offset: 0x%x" % (insn.encoding.modrm_offset))
# print displacement value
print("\tdisp: 0x%s" % to_x_32(insn.disp))
# print displacement offset (offset into instruction bytes)
if insn.encoding.disp_offset != 0:
print("\tdisp_offset: 0x%x" % (insn.encoding.disp_offset))
# print displacement size
if insn.encoding.disp_size != 0:
print("\tdisp_size: 0x%x" % (insn.encoding.disp_size))
# SIB is not available in 16-bit mode
if (mode & CS_MODE_16 == 0):
# print SIB byte
print("\tsib: 0x%x" % (insn.sib))
if (insn.sib):
if insn.sib_base != 0:
print("\t\tsib_base: %s" % (insn.reg_name(insn.sib_base)))
if insn.sib_index != 0:
print("\t\tsib_index: %s" % (insn.reg_name(insn.sib_index)))
if insn.sib_scale != 0:
print("\t\tsib_scale: %d" % (insn.sib_scale))
# XOP CC type
if insn.xop_cc != X86_XOP_CC_INVALID:
print("\txop_cc: %u" % (insn.xop_cc))
# SSE CC type
if insn.sse_cc != X86_SSE_CC_INVALID:
print("\tsse_cc: %u" % (insn.sse_cc))
# AVX CC type
if insn.avx_cc != X86_AVX_CC_INVALID:
print("\tavx_cc: %u" % (insn.avx_cc))
# AVX Suppress All Exception
if insn.avx_sae:
print("\tavx_sae: TRUE")
# AVX Rounding Mode type
if insn.avx_rm != X86_AVX_RM_INVALID:
print("\tavx_rm: %u" % (insn.avx_rm))
count = insn.op_count(X86_OP_IMM)
if count > 0:
print("\timm_count: %u" % count)
for i in range(count):
op = insn.op_find(X86_OP_IMM, i + 1)
print("\t\timms[%u]: 0x%s" % (i + 1, to_x(op.imm)))
if insn.encoding.imm_offset != 0:
print("\timm_offset: 0x%x" % (insn.encoding.imm_offset))
if insn.encoding.imm_size != 0:
print("\timm_size: 0x%x" % (insn.encoding.imm_size))
if len(insn.operands) > 0:
print("\top_count: %u" % len(insn.operands))
c = -1
for i in insn.operands:
c += 1
if i.type == X86_OP_REG:
print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg)))
if i.type == X86_OP_IMM:
print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm)))
if i.type == X86_OP_MEM:
print("\t\toperands[%u].type: MEM" % c)
if i.mem.segment != 0:
print("\t\t\toperands[%u].mem.segment: REG = %s" % (c, insn.reg_name(i.mem.segment)))
if i.mem.base != 0:
print("\t\t\toperands[%u].mem.base: REG = %s" % (c, insn.reg_name(i.mem.base)))
if i.mem.index != 0:
print("\t\t\toperands[%u].mem.index: REG = %s" % (c, insn.reg_name(i.mem.index)))
if i.mem.scale != 1:
print("\t\t\toperands[%u].mem.scale: %u" % (c, i.mem.scale))
if i.mem.disp != 0:
print("\t\t\toperands[%u].mem.disp: 0x%s" % (c, to_x(i.mem.disp)))
# AVX broadcast type
if i.avx_bcast != X86_AVX_BCAST_INVALID:
print("\t\toperands[%u].avx_bcast: %u" % (c, i.avx_bcast))
# AVX zero opmask {z}
if i.avx_zero_opmask:
print("\t\toperands[%u].avx_zero_opmask: TRUE" % (c))
print("\t\toperands[%u].size: %u" % (c, i.size))
if i.access == CS_AC_READ:
print("\t\toperands[%u].access: READ\n" % (c))
elif i.access == CS_AC_WRITE:
print("\t\toperands[%u].access: WRITE\n" % (c))
elif i.access == CS_AC_READ | CS_AC_WRITE:
print("\t\toperands[%u].access: READ | WRITE\n" % (c))
(regs_read, regs_write) = insn.regs_access()
if len(regs_read) > 0:
print("\tRegisters read:", end="")
for r in regs_read:
print(" %s" %(insn.reg_name(r)), end="")
print("")
if len(regs_write) > 0:
print("\tRegisters modified:", end="")
for r in regs_write:
print(" %s" %(insn.reg_name(r)), end="")
print("")
if insn.eflags:
updated_flags = []
for i in range(0,46):
if insn.eflags & (1 << i):
updated_flags.append(get_eflag_name(1 << i))
print("\tEFLAGS: %s" % (','.join(p for p in updated_flags)))
# ## Test class Cs
def test_class():
for (arch, mode, code, comment, syntax) in all_tests:
print("*" * 16)
print("Platform: %s" % comment)
print("Code: %s" % to_hex(code))
print("Disasm:")
try:
md = Cs(arch, mode)
md.detail = True
if syntax is not None:
md.syntax = syntax
for insn in md.disasm(code, 0x1000):
print_insn_detail(mode, insn)
print ()
print ("0x%x:\n" % (insn.address + insn.size))
except CsError as e:
print("ERROR: %s" % e)
if __name__ == '__main__':
test_class()
|