1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
//===- RDFRegisters.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_RDFREGISTERS_H
#define LLVM_CODEGEN_RDFREGISTERS_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <set>
#include <vector>
namespace llvm {
class MachineFunction;
class raw_ostream;
namespace rdf {
using RegisterId = uint32_t;
// Template class for a map translating uint32_t into arbitrary types.
// The map will act like an indexed set: upon insertion of a new object,
// it will automatically assign a new index to it. Index of 0 is treated
// as invalid and is never allocated.
template <typename T, unsigned N = 32>
struct IndexedSet {
IndexedSet() { Map.reserve(N); }
T get(uint32_t Idx) const {
// Index Idx corresponds to Map[Idx-1].
assert(Idx != 0 && !Map.empty() && Idx-1 < Map.size());
return Map[Idx-1];
}
uint32_t insert(T Val) {
// Linear search.
auto F = llvm::find(Map, Val);
if (F != Map.end())
return F - Map.begin() + 1;
Map.push_back(Val);
return Map.size(); // Return actual_index + 1.
}
uint32_t find(T Val) const {
auto F = llvm::find(Map, Val);
assert(F != Map.end());
return F - Map.begin() + 1;
}
uint32_t size() const { return Map.size(); }
using const_iterator = typename std::vector<T>::const_iterator;
const_iterator begin() const { return Map.begin(); }
const_iterator end() const { return Map.end(); }
private:
std::vector<T> Map;
};
struct RegisterRef {
RegisterId Reg = 0;
LaneBitmask Mask = LaneBitmask::getNone();
RegisterRef() = default;
explicit RegisterRef(RegisterId R, LaneBitmask M = LaneBitmask::getAll())
: Reg(R), Mask(R != 0 ? M : LaneBitmask::getNone()) {}
operator bool() const {
return Reg != 0 && Mask.any();
}
bool operator== (const RegisterRef &RR) const {
return Reg == RR.Reg && Mask == RR.Mask;
}
bool operator!= (const RegisterRef &RR) const {
return !operator==(RR);
}
bool operator< (const RegisterRef &RR) const {
return Reg < RR.Reg || (Reg == RR.Reg && Mask < RR.Mask);
}
size_t hash() const {
return std::hash<RegisterId>{}(Reg) ^
std::hash<LaneBitmask::Type>{}(Mask.getAsInteger());
}
};
struct PhysicalRegisterInfo {
PhysicalRegisterInfo(const TargetRegisterInfo &tri,
const MachineFunction &mf);
static bool isRegMaskId(RegisterId R) {
return Register::isStackSlot(R);
}
RegisterId getRegMaskId(const uint32_t *RM) const {
return Register::index2StackSlot(RegMasks.find(RM));
}
const uint32_t *getRegMaskBits(RegisterId R) const {
return RegMasks.get(Register::stackSlot2Index(R));
}
bool alias(RegisterRef RA, RegisterRef RB) const {
if (!isRegMaskId(RA.Reg))
return !isRegMaskId(RB.Reg) ? aliasRR(RA, RB) : aliasRM(RA, RB);
return !isRegMaskId(RB.Reg) ? aliasRM(RB, RA) : aliasMM(RA, RB);
}
std::set<RegisterId> getAliasSet(RegisterId Reg) const;
RegisterRef getRefForUnit(uint32_t U) const {
return RegisterRef(UnitInfos[U].Reg, UnitInfos[U].Mask);
}
const BitVector &getMaskUnits(RegisterId MaskId) const {
return MaskInfos[Register::stackSlot2Index(MaskId)].Units;
}
const BitVector &getUnitAliases(uint32_t U) const {
return AliasInfos[U].Regs;
}
RegisterRef mapTo(RegisterRef RR, unsigned R) const;
const TargetRegisterInfo &getTRI() const { return TRI; }
private:
struct RegInfo {
const TargetRegisterClass *RegClass = nullptr;
};
struct UnitInfo {
RegisterId Reg = 0;
LaneBitmask Mask;
};
struct MaskInfo {
BitVector Units;
};
struct AliasInfo {
BitVector Regs;
};
const TargetRegisterInfo &TRI;
IndexedSet<const uint32_t*> RegMasks;
std::vector<RegInfo> RegInfos;
std::vector<UnitInfo> UnitInfos;
std::vector<MaskInfo> MaskInfos;
std::vector<AliasInfo> AliasInfos;
bool aliasRR(RegisterRef RA, RegisterRef RB) const;
bool aliasRM(RegisterRef RR, RegisterRef RM) const;
bool aliasMM(RegisterRef RM, RegisterRef RN) const;
};
struct RegisterAggr {
RegisterAggr(const PhysicalRegisterInfo &pri)
: Units(pri.getTRI().getNumRegUnits()), PRI(pri) {}
RegisterAggr(const RegisterAggr &RG) = default;
unsigned count() const { return Units.count(); }
bool empty() const { return Units.none(); }
bool hasAliasOf(RegisterRef RR) const;
bool hasCoverOf(RegisterRef RR) const;
bool operator==(const RegisterAggr &A) const {
return DenseMapInfo<BitVector>::isEqual(Units, A.Units);
}
static bool isCoverOf(RegisterRef RA, RegisterRef RB,
const PhysicalRegisterInfo &PRI) {
return RegisterAggr(PRI).insert(RA).hasCoverOf(RB);
}
RegisterAggr &insert(RegisterRef RR);
RegisterAggr &insert(const RegisterAggr &RG);
RegisterAggr &intersect(RegisterRef RR);
RegisterAggr &intersect(const RegisterAggr &RG);
RegisterAggr &clear(RegisterRef RR);
RegisterAggr &clear(const RegisterAggr &RG);
RegisterRef intersectWith(RegisterRef RR) const;
RegisterRef clearIn(RegisterRef RR) const;
RegisterRef makeRegRef() const;
size_t hash() const {
return DenseMapInfo<BitVector>::getHashValue(Units);
}
void print(raw_ostream &OS) const;
struct rr_iterator {
using MapType = std::map<RegisterId, LaneBitmask>;
private:
MapType Masks;
MapType::iterator Pos;
unsigned Index;
const RegisterAggr *Owner;
public:
rr_iterator(const RegisterAggr &RG, bool End);
RegisterRef operator*() const {
return RegisterRef(Pos->first, Pos->second);
}
rr_iterator &operator++() {
++Pos;
++Index;
return *this;
}
bool operator==(const rr_iterator &I) const {
assert(Owner == I.Owner);
(void)Owner;
return Index == I.Index;
}
bool operator!=(const rr_iterator &I) const {
return !(*this == I);
}
};
rr_iterator rr_begin() const {
return rr_iterator(*this, false);
}
rr_iterator rr_end() const {
return rr_iterator(*this, true);
}
private:
BitVector Units;
const PhysicalRegisterInfo &PRI;
};
// Optionally print the lane mask, if it is not ~0.
struct PrintLaneMaskOpt {
PrintLaneMaskOpt(LaneBitmask M) : Mask(M) {}
LaneBitmask Mask;
};
raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P);
raw_ostream &operator<< (raw_ostream &OS, const RegisterAggr &A);
} // end namespace rdf
} // end namespace llvm
namespace std {
template <> struct hash<llvm::rdf::RegisterRef> {
size_t operator()(llvm::rdf::RegisterRef A) const {
return A.hash();
}
};
template <> struct hash<llvm::rdf::RegisterAggr> {
size_t operator()(const llvm::rdf::RegisterAggr &A) const {
return A.hash();
}
};
template <> struct equal_to<llvm::rdf::RegisterAggr> {
bool operator()(const llvm::rdf::RegisterAggr &A,
const llvm::rdf::RegisterAggr &B) const {
return A == B;
}
};
}
#endif // LLVM_CODEGEN_RDFREGISTERS_H
|