1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges: :
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
// The other integral ranges use min/max values for special range values. For
// example, for 8-bit types, it uses:
// [0, 0) = {} = Empty set
// [255, 255) = {0..255} = Full Set
//
// Note that ConstantRange can be used to represent either signed or
// unsigned ranges.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_CONSTANTRANGE_H
#define LLVM_IR_CONSTANTRANGE_H
#include "llvm/ADT/APInt.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/Support/Compiler.h"
#include <cstdint>
namespace llvm {
class MDNode;
class raw_ostream;
struct KnownBits;
/// This class represents a range of values.
class LLVM_NODISCARD ConstantRange {
APInt Lower, Upper;
/// Create empty constant range with same bitwidth.
ConstantRange getEmpty() const {
return ConstantRange(getBitWidth(), false);
}
/// Create full constant range with same bitwidth.
ConstantRange getFull() const {
return ConstantRange(getBitWidth(), true);
}
public:
/// Initialize a full or empty set for the specified bit width.
explicit ConstantRange(uint32_t BitWidth, bool isFullSet);
/// Initialize a range to hold the single specified value.
ConstantRange(APInt Value);
/// Initialize a range of values explicitly. This will assert out if
/// Lower==Upper and Lower != Min or Max value for its type. It will also
/// assert out if the two APInt's are not the same bit width.
ConstantRange(APInt Lower, APInt Upper);
/// Create empty constant range with the given bit width.
static ConstantRange getEmpty(uint32_t BitWidth) {
return ConstantRange(BitWidth, false);
}
/// Create full constant range with the given bit width.
static ConstantRange getFull(uint32_t BitWidth) {
return ConstantRange(BitWidth, true);
}
/// Create non-empty constant range with the given bounds. If Lower and
/// Upper are the same, a full range is returned.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
if (Lower == Upper)
return getFull(Lower.getBitWidth());
return ConstantRange(std::move(Lower), std::move(Upper));
}
/// Initialize a range based on a known bits constraint. The IsSigned flag
/// indicates whether the constant range should not wrap in the signed or
/// unsigned domain.
static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);
/// Produce the smallest range such that all values that may satisfy the given
/// predicate with any value contained within Other is contained in the
/// returned range. Formally, this returns a superset of
/// 'union over all y in Other . { x : icmp op x y is true }'. If the exact
/// answer is not representable as a ConstantRange, the return value will be a
/// proper superset of the above.
///
/// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &Other);
/// Produce the largest range such that all values in the returned range
/// satisfy the given predicate with all values contained within Other.
/// Formally, this returns a subset of
/// 'intersection over all y in Other . { x : icmp op x y is true }'. If the
/// exact answer is not representable as a ConstantRange, the return value
/// will be a proper subset of the above.
///
/// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &Other);
/// Produce the exact range such that all values in the returned range satisfy
/// the given predicate with any value contained within Other. Formally, this
/// returns the exact answer when the superset of 'union over all y in Other
/// is exactly same as the subset of intersection over all y in Other.
/// { x : icmp op x y is true}'.
///
/// Example: Pred = ult and Other = i8 3 returns [0, 3)
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
const APInt &Other);
/// Does the predicate \p Pred hold between ranges this and \p Other?
/// NOTE: false does not mean that inverse predicate holds!
bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const;
/// Return true iff CR1 ult CR2 is equivalent to CR1 slt CR2.
/// Does not depend on strictness/direction of the predicate.
static bool
areInsensitiveToSignednessOfICmpPredicate(const ConstantRange &CR1,
const ConstantRange &CR2);
/// Return true iff CR1 ult CR2 is equivalent to CR1 sge CR2.
/// Does not depend on strictness/direction of the predicate.
static bool
areInsensitiveToSignednessOfInvertedICmpPredicate(const ConstantRange &CR1,
const ConstantRange &CR2);
/// If the comparison between constant ranges this and Other
/// is insensitive to the signedness of the comparison predicate,
/// return a predicate equivalent to \p Pred, with flipped signedness
/// (i.e. unsigned instead of signed or vice versa), and maybe inverted,
/// otherwise returns CmpInst::Predicate::BAD_ICMP_PREDICATE.
static CmpInst::Predicate
getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred,
const ConstantRange &CR1,
const ConstantRange &CR2);
/// Produce the largest range containing all X such that "X BinOp Y" is
/// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
/// be *some* Y in Other for which additional X not contained in the result
/// also do not overflow.
///
/// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
///
/// Examples:
/// typedef OverflowingBinaryOperator OBO;
/// #define MGNR makeGuaranteedNoWrapRegion
/// MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
/// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
/// MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
/// MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
/// MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
/// MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind);
/// Produce the range that contains X if and only if "X BinOp Other" does
/// not wrap.
static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
const APInt &Other,
unsigned NoWrapKind);
/// Returns true if ConstantRange calculations are supported for intrinsic
/// with \p IntrinsicID.
static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID);
/// Compute range of intrinsic result for the given operand ranges.
static ConstantRange intrinsic(Intrinsic::ID IntrinsicID,
ArrayRef<ConstantRange> Ops);
/// Set up \p Pred and \p RHS such that
/// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this. Return true if
/// successful.
bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
/// Set up \p Pred, \p RHS and \p Offset such that (V + Offset) Pred RHS
/// is true iff V is in the range. Prefers using Offset == 0 if possible.
void
getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS, APInt &Offset) const;
/// Return the lower value for this range.
const APInt &getLower() const { return Lower; }
/// Return the upper value for this range.
const APInt &getUpper() const { return Upper; }
/// Get the bit width of this ConstantRange.
uint32_t getBitWidth() const { return Lower.getBitWidth(); }
/// Return true if this set contains all of the elements possible
/// for this data-type.
bool isFullSet() const;
/// Return true if this set contains no members.
bool isEmptySet() const;
/// Return true if this set wraps around the unsigned domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, 0) == [X, Max]: Not wrapped.
bool isWrappedSet() const;
/// Return true if the exclusive upper bound wraps around the unsigned
/// domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, 0): Wrapped.
bool isUpperWrapped() const;
/// Return true if this set wraps around the signed domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, SignedMin) == [X, SignedMax]: Not wrapped.
bool isSignWrappedSet() const;
/// Return true if the (exclusive) upper bound wraps around the signed
/// domain. Special cases:
/// * Empty set: Not wrapped.
/// * Full set: Not wrapped.
/// * [X, SignedMin): Wrapped.
bool isUpperSignWrapped() const;
/// Return true if the specified value is in the set.
bool contains(const APInt &Val) const;
/// Return true if the other range is a subset of this one.
bool contains(const ConstantRange &CR) const;
/// If this set contains a single element, return it, otherwise return null.
const APInt *getSingleElement() const {
if (Upper == Lower + 1)
return &Lower;
return nullptr;
}
/// If this set contains all but a single element, return it, otherwise return
/// null.
const APInt *getSingleMissingElement() const {
if (Lower == Upper + 1)
return &Upper;
return nullptr;
}
/// Return true if this set contains exactly one member.
bool isSingleElement() const { return getSingleElement() != nullptr; }
/// Compare set size of this range with the range CR.
bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
/// Compare set size of this range with Value.
bool isSizeLargerThan(uint64_t MaxSize) const;
/// Return true if all values in this range are negative.
bool isAllNegative() const;
/// Return true if all values in this range are non-negative.
bool isAllNonNegative() const;
/// Return the largest unsigned value contained in the ConstantRange.
APInt getUnsignedMax() const;
/// Return the smallest unsigned value contained in the ConstantRange.
APInt getUnsignedMin() const;
/// Return the largest signed value contained in the ConstantRange.
APInt getSignedMax() const;
/// Return the smallest signed value contained in the ConstantRange.
APInt getSignedMin() const;
/// Return true if this range is equal to another range.
bool operator==(const ConstantRange &CR) const {
return Lower == CR.Lower && Upper == CR.Upper;
}
bool operator!=(const ConstantRange &CR) const {
return !operator==(CR);
}
/// Compute the maximal number of active bits needed to represent every value
/// in this range.
unsigned getActiveBits() const;
/// Compute the maximal number of bits needed to represent every value
/// in this signed range.
unsigned getMinSignedBits() const;
/// Subtract the specified constant from the endpoints of this constant range.
ConstantRange subtract(const APInt &CI) const;
/// Subtract the specified range from this range (aka relative complement of
/// the sets).
ConstantRange difference(const ConstantRange &CR) const;
/// If represented precisely, the result of some range operations may consist
/// of multiple disjoint ranges. As only a single range may be returned, any
/// range covering these disjoint ranges constitutes a valid result, but some
/// may be more useful than others depending on context. The preferred range
/// type specifies whether a range that is non-wrapping in the unsigned or
/// signed domain, or has the smallest size, is preferred. If a signedness is
/// preferred but all ranges are non-wrapping or all wrapping, then the
/// smallest set size is preferred. If there are multiple smallest sets, any
/// one of them may be returned.
enum PreferredRangeType { Smallest, Unsigned, Signed };
/// Return the range that results from the intersection of this range with
/// another range. If the intersection is disjoint, such that two results
/// are possible, the preferred range is determined by the PreferredRangeType.
ConstantRange intersectWith(const ConstantRange &CR,
PreferredRangeType Type = Smallest) const;
/// Return the range that results from the union of this range
/// with another range. The resultant range is guaranteed to include the
/// elements of both sets, but may contain more. For example, [3, 9) union
/// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
/// in either set before.
ConstantRange unionWith(const ConstantRange &CR,
PreferredRangeType Type = Smallest) const;
/// Intersect the two ranges and return the result if it can be represented
/// exactly, otherwise return None.
Optional<ConstantRange> exactIntersectWith(const ConstantRange &CR) const;
/// Union the two ranges and return the result if it can be represented
/// exactly, otherwise return None.
Optional<ConstantRange> exactUnionWith(const ConstantRange &CR) const;
/// Return a new range representing the possible values resulting
/// from an application of the specified cast operator to this range. \p
/// BitWidth is the target bitwidth of the cast. For casts which don't
/// change bitwidth, it must be the same as the source bitwidth. For casts
/// which do change bitwidth, the bitwidth must be consistent with the
/// requested cast and source bitwidth.
ConstantRange castOp(Instruction::CastOps CastOp,
uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// zero extended to BitWidth.
ConstantRange zeroExtend(uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// sign extended to BitWidth.
ConstantRange signExtend(uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// truncated to the specified type.
ConstantRange truncate(uint32_t BitWidth) const;
/// Make this range have the bit width given by \p BitWidth. The
/// value is zero extended, truncated, or left alone to make it that width.
ConstantRange zextOrTrunc(uint32_t BitWidth) const;
/// Make this range have the bit width given by \p BitWidth. The
/// value is sign extended, truncated, or left alone to make it that width.
ConstantRange sextOrTrunc(uint32_t BitWidth) const;
/// Return a new range representing the possible values resulting
/// from an application of the specified binary operator to an left hand side
/// of this range and a right hand side of \p Other.
ConstantRange binaryOp(Instruction::BinaryOps BinOp,
const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an application of the specified overflowing binary operator to a
/// left hand side of this range and a right hand side of \p Other given
/// the provided knowledge about lack of wrapping \p NoWrapKind.
ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind) const;
/// Return a new range representing the possible values resulting
/// from an addition of a value in this range and a value in \p Other.
ConstantRange add(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an addition with wrap type \p NoWrapKind of a value in this
/// range and a value in \p Other.
/// If the result range is disjoint, the preferred range is determined by the
/// \p PreferredRangeType.
ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
PreferredRangeType RangeType = Smallest) const;
/// Return a new range representing the possible values resulting
/// from a subtraction of a value in this range and a value in \p Other.
ConstantRange sub(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an subtraction with wrap type \p NoWrapKind of a value in this
/// range and a value in \p Other.
/// If the result range is disjoint, the preferred range is determined by the
/// \p PreferredRangeType.
ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
PreferredRangeType RangeType = Smallest) const;
/// Return a new range representing the possible values resulting
/// from a multiplication of a value in this range and a value in \p Other,
/// treating both this and \p Other as unsigned ranges.
ConstantRange multiply(const ConstantRange &Other) const;
/// Return range of possible values for a signed multiplication of this and
/// \p Other. However, if overflow is possible always return a full range
/// rather than trying to determine a more precise result.
ConstantRange smul_fast(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed maximum of a value in this range and a value in \p Other.
ConstantRange smax(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned maximum of a value in this range and a value in \p Other.
ConstantRange umax(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed minimum of a value in this range and a value in \p Other.
ConstantRange smin(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned minimum of a value in this range and a value in \p Other.
ConstantRange umin(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned division of a value in this range and a value in
/// \p Other.
ConstantRange udiv(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed division of a value in this range and a value in
/// \p Other. Division by zero and division of SignedMin by -1 are considered
/// undefined behavior, in line with IR, and do not contribute towards the
/// result.
ConstantRange sdiv(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned remainder operation of a value in this range and a
/// value in \p Other.
ConstantRange urem(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed remainder operation of a value in this range and a
/// value in \p Other.
ConstantRange srem(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from
/// a binary-xor of a value in this range by an all-one value,
/// aka bitwise complement operation.
ConstantRange binaryNot() const;
/// Return a new range representing the possible values resulting
/// from a binary-and of a value in this range by a value in \p Other.
ConstantRange binaryAnd(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a binary-or of a value in this range by a value in \p Other.
ConstantRange binaryOr(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a binary-xor of a value in this range by a value in \p Other.
ConstantRange binaryXor(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a left shift of a value in this range by a value in \p Other.
/// TODO: This isn't fully implemented yet.
ConstantRange shl(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from a
/// logical right shift of a value in this range and a value in \p Other.
ConstantRange lshr(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from a
/// arithmetic right shift of a value in this range and a value in \p Other.
ConstantRange ashr(const ConstantRange &Other) const;
/// Perform an unsigned saturating addition of two constant ranges.
ConstantRange uadd_sat(const ConstantRange &Other) const;
/// Perform a signed saturating addition of two constant ranges.
ConstantRange sadd_sat(const ConstantRange &Other) const;
/// Perform an unsigned saturating subtraction of two constant ranges.
ConstantRange usub_sat(const ConstantRange &Other) const;
/// Perform a signed saturating subtraction of two constant ranges.
ConstantRange ssub_sat(const ConstantRange &Other) const;
/// Perform an unsigned saturating multiplication of two constant ranges.
ConstantRange umul_sat(const ConstantRange &Other) const;
/// Perform a signed saturating multiplication of two constant ranges.
ConstantRange smul_sat(const ConstantRange &Other) const;
/// Perform an unsigned saturating left shift of this constant range by a
/// value in \p Other.
ConstantRange ushl_sat(const ConstantRange &Other) const;
/// Perform a signed saturating left shift of this constant range by a
/// value in \p Other.
ConstantRange sshl_sat(const ConstantRange &Other) const;
/// Return a new range that is the logical not of the current set.
ConstantRange inverse() const;
/// Calculate absolute value range. If the original range contains signed
/// min, then the resulting range will contain signed min if and only if
/// \p IntMinIsPoison is false.
ConstantRange abs(bool IntMinIsPoison = false) const;
/// Represents whether an operation on the given constant range is known to
/// always or never overflow.
enum class OverflowResult {
/// Always overflows in the direction of signed/unsigned min value.
AlwaysOverflowsLow,
/// Always overflows in the direction of signed/unsigned max value.
AlwaysOverflowsHigh,
/// May or may not overflow.
MayOverflow,
/// Never overflows.
NeverOverflows,
};
/// Return whether unsigned add of the two ranges always/never overflows.
OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;
/// Return whether signed add of the two ranges always/never overflows.
OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;
/// Return whether unsigned sub of the two ranges always/never overflows.
OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;
/// Return whether signed sub of the two ranges always/never overflows.
OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;
/// Return whether unsigned mul of the two ranges always/never overflows.
OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;
/// Print out the bounds to a stream.
void print(raw_ostream &OS) const;
/// Allow printing from a debugger easily.
void dump() const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
CR.print(OS);
return OS;
}
/// Parse out a conservative ConstantRange from !range metadata.
///
/// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
} // end namespace llvm
#endif // LLVM_IR_CONSTANTRANGE_H
|