1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
//===- llvm/FixedPointBuilder.h - Builder for fixed-point ops ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the FixedPointBuilder class, which is used as a convenient
// way to lower fixed-point arithmetic operations to LLVM IR.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_FIXEDPOINTBUILDER_H
#define LLVM_IR_FIXEDPOINTBUILDER_H
#include "llvm/ADT/APFixedPoint.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
namespace llvm {
template <class IRBuilderTy> class FixedPointBuilder {
IRBuilderTy &B;
Value *Convert(Value *Src, const FixedPointSemantics &SrcSema,
const FixedPointSemantics &DstSema, bool DstIsInteger) {
unsigned SrcWidth = SrcSema.getWidth();
unsigned DstWidth = DstSema.getWidth();
unsigned SrcScale = SrcSema.getScale();
unsigned DstScale = DstSema.getScale();
bool SrcIsSigned = SrcSema.isSigned();
bool DstIsSigned = DstSema.isSigned();
Type *DstIntTy = B.getIntNTy(DstWidth);
Value *Result = Src;
unsigned ResultWidth = SrcWidth;
// Downscale.
if (DstScale < SrcScale) {
// When converting to integers, we round towards zero. For negative
// numbers, right shifting rounds towards negative infinity. In this case,
// we can just round up before shifting.
if (DstIsInteger && SrcIsSigned) {
Value *Zero = Constant::getNullValue(Result->getType());
Value *IsNegative = B.CreateICmpSLT(Result, Zero);
Value *LowBits = ConstantInt::get(
B.getContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
Value *Rounded = B.CreateAdd(Result, LowBits);
Result = B.CreateSelect(IsNegative, Rounded, Result);
}
Result = SrcIsSigned
? B.CreateAShr(Result, SrcScale - DstScale, "downscale")
: B.CreateLShr(Result, SrcScale - DstScale, "downscale");
}
if (!DstSema.isSaturated()) {
// Resize.
Result = B.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
// Upscale.
if (DstScale > SrcScale)
Result = B.CreateShl(Result, DstScale - SrcScale, "upscale");
} else {
// Adjust the number of fractional bits.
if (DstScale > SrcScale) {
// Compare to DstWidth to prevent resizing twice.
ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
Type *UpscaledTy = B.getIntNTy(ResultWidth);
Result = B.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
Result = B.CreateShl(Result, DstScale - SrcScale, "upscale");
}
// Handle saturation.
bool LessIntBits = DstSema.getIntegralBits() < SrcSema.getIntegralBits();
if (LessIntBits) {
Value *Max = ConstantInt::get(
B.getContext(),
APFixedPoint::getMax(DstSema).getValue().extOrTrunc(ResultWidth));
Value *TooHigh = SrcIsSigned ? B.CreateICmpSGT(Result, Max)
: B.CreateICmpUGT(Result, Max);
Result = B.CreateSelect(TooHigh, Max, Result, "satmax");
}
// Cannot overflow min to dest type if src is unsigned since all fixed
// point types can cover the unsigned min of 0.
if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
Value *Min = ConstantInt::get(
B.getContext(),
APFixedPoint::getMin(DstSema).getValue().extOrTrunc(ResultWidth));
Value *TooLow = B.CreateICmpSLT(Result, Min);
Result = B.CreateSelect(TooLow, Min, Result, "satmin");
}
// Resize the integer part to get the final destination size.
if (ResultWidth != DstWidth)
Result = B.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
}
return Result;
}
/// Get the common semantic for two semantics, with the added imposition that
/// saturated padded types retain the padding bit.
FixedPointSemantics
getCommonBinopSemantic(const FixedPointSemantics &LHSSema,
const FixedPointSemantics &RHSSema) {
auto C = LHSSema.getCommonSemantics(RHSSema);
bool BothPadded =
LHSSema.hasUnsignedPadding() && RHSSema.hasUnsignedPadding();
return FixedPointSemantics(
C.getWidth() + (unsigned)(BothPadded && C.isSaturated()), C.getScale(),
C.isSigned(), C.isSaturated(), BothPadded);
}
/// Given a floating point type and a fixed-point semantic, return a floating
/// point type which can accommodate the fixed-point semantic. This is either
/// \p Ty, or a floating point type with a larger exponent than Ty.
Type *getAccommodatingFloatType(Type *Ty, const FixedPointSemantics &Sema) {
const fltSemantics *FloatSema = &Ty->getFltSemantics();
while (!Sema.fitsInFloatSemantics(*FloatSema))
FloatSema = APFixedPoint::promoteFloatSemantics(FloatSema);
return Type::getFloatingPointTy(Ty->getContext(), *FloatSema);
}
public:
FixedPointBuilder(IRBuilderTy &Builder) : B(Builder) {}
/// Convert an integer value representing a fixed-point number from one
/// fixed-point semantic to another fixed-point semantic.
/// \p Src - The source value
/// \p SrcSema - The fixed-point semantic of the source value
/// \p DstSema - The resulting fixed-point semantic
Value *CreateFixedToFixed(Value *Src, const FixedPointSemantics &SrcSema,
const FixedPointSemantics &DstSema) {
return Convert(Src, SrcSema, DstSema, false);
}
/// Convert an integer value representing a fixed-point number to an integer
/// with the given bit width and signedness.
/// \p Src - The source value
/// \p SrcSema - The fixed-point semantic of the source value
/// \p DstWidth - The bit width of the result value
/// \p DstIsSigned - The signedness of the result value
Value *CreateFixedToInteger(Value *Src, const FixedPointSemantics &SrcSema,
unsigned DstWidth, bool DstIsSigned) {
return Convert(
Src, SrcSema,
FixedPointSemantics::GetIntegerSemantics(DstWidth, DstIsSigned), true);
}
/// Convert an integer value with the given signedness to an integer value
/// representing the given fixed-point semantic.
/// \p Src - The source value
/// \p SrcIsSigned - The signedness of the source value
/// \p DstSema - The resulting fixed-point semantic
Value *CreateIntegerToFixed(Value *Src, unsigned SrcIsSigned,
const FixedPointSemantics &DstSema) {
return Convert(Src,
FixedPointSemantics::GetIntegerSemantics(
Src->getType()->getScalarSizeInBits(), SrcIsSigned),
DstSema, false);
}
Value *CreateFixedToFloating(Value *Src, const FixedPointSemantics &SrcSema,
Type *DstTy) {
Value *Result;
Type *OpTy = getAccommodatingFloatType(DstTy, SrcSema);
// Convert the raw fixed-point value directly to floating point. If the
// value is too large to fit, it will be rounded, not truncated.
Result = SrcSema.isSigned() ? B.CreateSIToFP(Src, OpTy)
: B.CreateUIToFP(Src, OpTy);
// Rescale the integral-in-floating point by the scaling factor. This is
// lossless, except for overflow to infinity which is unlikely.
Result = B.CreateFMul(Result,
ConstantFP::get(OpTy, std::pow(2, -(int)SrcSema.getScale())));
if (OpTy != DstTy)
Result = B.CreateFPTrunc(Result, DstTy);
return Result;
}
Value *CreateFloatingToFixed(Value *Src, const FixedPointSemantics &DstSema) {
bool UseSigned = DstSema.isSigned() || DstSema.hasUnsignedPadding();
Value *Result = Src;
Type *OpTy = getAccommodatingFloatType(Src->getType(), DstSema);
if (OpTy != Src->getType())
Result = B.CreateFPExt(Result, OpTy);
// Rescale the floating point value so that its significant bits (for the
// purposes of the conversion) are in the integral range.
Result = B.CreateFMul(Result,
ConstantFP::get(OpTy, std::pow(2, DstSema.getScale())));
Type *ResultTy = B.getIntNTy(DstSema.getWidth());
if (DstSema.isSaturated()) {
Intrinsic::ID IID =
UseSigned ? Intrinsic::fptosi_sat : Intrinsic::fptoui_sat;
Result = B.CreateIntrinsic(IID, {ResultTy, OpTy}, {Result});
} else {
Result = UseSigned ? B.CreateFPToSI(Result, ResultTy)
: B.CreateFPToUI(Result, ResultTy);
}
// When saturating unsigned-with-padding using signed operations, we may
// get negative values. Emit an extra clamp to zero.
if (DstSema.isSaturated() && DstSema.hasUnsignedPadding()) {
Constant *Zero = Constant::getNullValue(Result->getType());
Result =
B.CreateSelect(B.CreateICmpSLT(Result, Zero), Zero, Result, "satmin");
}
return Result;
}
/// Add two fixed-point values and return the result in their common semantic.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateAdd(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
bool UseSigned = CommonSema.isSigned() || CommonSema.hasUnsignedPadding();
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
Value *Result;
if (CommonSema.isSaturated()) {
Intrinsic::ID IID = UseSigned ? Intrinsic::sadd_sat : Intrinsic::uadd_sat;
Result = B.CreateBinaryIntrinsic(IID, WideLHS, WideRHS);
} else {
Result = B.CreateAdd(WideLHS, WideRHS);
}
return CreateFixedToFixed(Result, CommonSema,
LHSSema.getCommonSemantics(RHSSema));
}
/// Subtract two fixed-point values and return the result in their common
/// semantic.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateSub(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
bool UseSigned = CommonSema.isSigned() || CommonSema.hasUnsignedPadding();
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
Value *Result;
if (CommonSema.isSaturated()) {
Intrinsic::ID IID = UseSigned ? Intrinsic::ssub_sat : Intrinsic::usub_sat;
Result = B.CreateBinaryIntrinsic(IID, WideLHS, WideRHS);
} else {
Result = B.CreateSub(WideLHS, WideRHS);
}
// Subtraction can end up below 0 for padded unsigned operations, so emit
// an extra clamp in that case.
if (CommonSema.isSaturated() && CommonSema.hasUnsignedPadding()) {
Constant *Zero = Constant::getNullValue(Result->getType());
Result =
B.CreateSelect(B.CreateICmpSLT(Result, Zero), Zero, Result, "satmin");
}
return CreateFixedToFixed(Result, CommonSema,
LHSSema.getCommonSemantics(RHSSema));
}
/// Multiply two fixed-point values and return the result in their common
/// semantic.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateMul(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
bool UseSigned = CommonSema.isSigned() || CommonSema.hasUnsignedPadding();
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
Intrinsic::ID IID;
if (CommonSema.isSaturated()) {
IID = UseSigned ? Intrinsic::smul_fix_sat : Intrinsic::umul_fix_sat;
} else {
IID = UseSigned ? Intrinsic::smul_fix : Intrinsic::umul_fix;
}
Value *Result = B.CreateIntrinsic(
IID, {WideLHS->getType()},
{WideLHS, WideRHS, B.getInt32(CommonSema.getScale())});
return CreateFixedToFixed(Result, CommonSema,
LHSSema.getCommonSemantics(RHSSema));
}
/// Divide two fixed-point values and return the result in their common
/// semantic.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateDiv(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
bool UseSigned = CommonSema.isSigned() || CommonSema.hasUnsignedPadding();
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
Intrinsic::ID IID;
if (CommonSema.isSaturated()) {
IID = UseSigned ? Intrinsic::sdiv_fix_sat : Intrinsic::udiv_fix_sat;
} else {
IID = UseSigned ? Intrinsic::sdiv_fix : Intrinsic::udiv_fix;
}
Value *Result = B.CreateIntrinsic(
IID, {WideLHS->getType()},
{WideLHS, WideRHS, B.getInt32(CommonSema.getScale())});
return CreateFixedToFixed(Result, CommonSema,
LHSSema.getCommonSemantics(RHSSema));
}
/// Left shift a fixed-point value by an unsigned integer value. The integer
/// value can be any bit width.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
Value *CreateShl(Value *LHS, const FixedPointSemantics &LHSSema, Value *RHS) {
bool UseSigned = LHSSema.isSigned() || LHSSema.hasUnsignedPadding();
RHS = B.CreateIntCast(RHS, LHS->getType(), /*IsSigned=*/false);
Value *Result;
if (LHSSema.isSaturated()) {
Intrinsic::ID IID = UseSigned ? Intrinsic::sshl_sat : Intrinsic::ushl_sat;
Result = B.CreateBinaryIntrinsic(IID, LHS, RHS);
} else {
Result = B.CreateShl(LHS, RHS);
}
return Result;
}
/// Right shift a fixed-point value by an unsigned integer value. The integer
/// value can be any bit width.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
Value *CreateShr(Value *LHS, const FixedPointSemantics &LHSSema, Value *RHS) {
RHS = B.CreateIntCast(RHS, LHS->getType(), false);
return LHSSema.isSigned() ? B.CreateAShr(LHS, RHS) : B.CreateLShr(LHS, RHS);
}
/// Compare two fixed-point values for equality.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateEQ(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
return B.CreateICmpEQ(WideLHS, WideRHS);
}
/// Compare two fixed-point values for inequality.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateNE(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
return B.CreateICmpNE(WideLHS, WideRHS);
}
/// Compare two fixed-point values as LHS < RHS.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateLT(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
return CommonSema.isSigned() ? B.CreateICmpSLT(WideLHS, WideRHS)
: B.CreateICmpULT(WideLHS, WideRHS);
}
/// Compare two fixed-point values as LHS <= RHS.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateLE(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
return CommonSema.isSigned() ? B.CreateICmpSLE(WideLHS, WideRHS)
: B.CreateICmpULE(WideLHS, WideRHS);
}
/// Compare two fixed-point values as LHS > RHS.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateGT(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
return CommonSema.isSigned() ? B.CreateICmpSGT(WideLHS, WideRHS)
: B.CreateICmpUGT(WideLHS, WideRHS);
}
/// Compare two fixed-point values as LHS >= RHS.
/// \p LHS - The left hand side
/// \p LHSSema - The semantic of the left hand side
/// \p RHS - The right hand side
/// \p RHSSema - The semantic of the right hand side
Value *CreateGE(Value *LHS, const FixedPointSemantics &LHSSema,
Value *RHS, const FixedPointSemantics &RHSSema) {
auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema);
Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema);
Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema);
return CommonSema.isSigned() ? B.CreateICmpSGE(WideLHS, WideRHS)
: B.CreateICmpUGE(WideLHS, WideRHS);
}
};
} // end namespace llvm
#endif // LLVM_IR_FIXEDPOINTBUILDER_H
|