1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
//===- llvm/MatrixBuilder.h - Builder to lower matrix ops -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the MatrixBuilder class, which is used as a convenient way
// to lower matrix operations to LLVM IR.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_MATRIXBUILDER_H
#define LLVM_IR_MATRIXBUILDER_H
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Alignment.h"
namespace llvm {
class Function;
class Twine;
class Module;
template <class IRBuilderTy> class MatrixBuilder {
IRBuilderTy &B;
Module *getModule() { return B.GetInsertBlock()->getParent()->getParent(); }
std::pair<Value *, Value *> splatScalarOperandIfNeeded(Value *LHS,
Value *RHS) {
assert((LHS->getType()->isVectorTy() || RHS->getType()->isVectorTy()) &&
"One of the operands must be a matrix (embedded in a vector)");
if (LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy()) {
assert(!isa<ScalableVectorType>(LHS->getType()) &&
"LHS Assumed to be fixed width");
RHS = B.CreateVectorSplat(
cast<VectorType>(LHS->getType())->getElementCount(), RHS,
"scalar.splat");
} else if (!LHS->getType()->isVectorTy() && RHS->getType()->isVectorTy()) {
assert(!isa<ScalableVectorType>(RHS->getType()) &&
"RHS Assumed to be fixed width");
LHS = B.CreateVectorSplat(
cast<VectorType>(RHS->getType())->getElementCount(), LHS,
"scalar.splat");
}
return {LHS, RHS};
}
public:
MatrixBuilder(IRBuilderTy &Builder) : B(Builder) {}
/// Create a column major, strided matrix load.
/// \p DataPtr - Start address of the matrix read
/// \p Rows - Number of rows in matrix (must be a constant)
/// \p Columns - Number of columns in matrix (must be a constant)
/// \p Stride - Space between columns
CallInst *CreateColumnMajorLoad(Value *DataPtr, Align Alignment,
Value *Stride, bool IsVolatile, unsigned Rows,
unsigned Columns, const Twine &Name = "") {
// Deal with the pointer
PointerType *PtrTy = cast<PointerType>(DataPtr->getType());
Type *EltTy = PtrTy->getPointerElementType();
auto *RetType = FixedVectorType::get(EltTy, Rows * Columns);
Value *Ops[] = {DataPtr, Stride, B.getInt1(IsVolatile), B.getInt32(Rows),
B.getInt32(Columns)};
Type *OverloadedTypes[] = {RetType, Stride->getType()};
Function *TheFn = Intrinsic::getDeclaration(
getModule(), Intrinsic::matrix_column_major_load, OverloadedTypes);
CallInst *Call = B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
Attribute AlignAttr =
Attribute::getWithAlignment(Call->getContext(), Alignment);
Call->addParamAttr(0, AlignAttr);
return Call;
}
/// Create a column major, strided matrix store.
/// \p Matrix - Matrix to store
/// \p Ptr - Pointer to write back to
/// \p Stride - Space between columns
CallInst *CreateColumnMajorStore(Value *Matrix, Value *Ptr, Align Alignment,
Value *Stride, bool IsVolatile,
unsigned Rows, unsigned Columns,
const Twine &Name = "") {
Value *Ops[] = {Matrix, Ptr,
Stride, B.getInt1(IsVolatile),
B.getInt32(Rows), B.getInt32(Columns)};
Type *OverloadedTypes[] = {Matrix->getType(), Stride->getType()};
Function *TheFn = Intrinsic::getDeclaration(
getModule(), Intrinsic::matrix_column_major_store, OverloadedTypes);
CallInst *Call = B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
Attribute AlignAttr =
Attribute::getWithAlignment(Call->getContext(), Alignment);
Call->addParamAttr(1, AlignAttr);
return Call;
}
/// Create a llvm.matrix.transpose call, transposing \p Matrix with \p Rows
/// rows and \p Columns columns.
CallInst *CreateMatrixTranspose(Value *Matrix, unsigned Rows,
unsigned Columns, const Twine &Name = "") {
auto *OpType = cast<VectorType>(Matrix->getType());
auto *ReturnType =
FixedVectorType::get(OpType->getElementType(), Rows * Columns);
Type *OverloadedTypes[] = {ReturnType};
Value *Ops[] = {Matrix, B.getInt32(Rows), B.getInt32(Columns)};
Function *TheFn = Intrinsic::getDeclaration(
getModule(), Intrinsic::matrix_transpose, OverloadedTypes);
return B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
}
/// Create a llvm.matrix.multiply call, multiplying matrixes \p LHS and \p
/// RHS.
CallInst *CreateMatrixMultiply(Value *LHS, Value *RHS, unsigned LHSRows,
unsigned LHSColumns, unsigned RHSColumns,
const Twine &Name = "") {
auto *LHSType = cast<VectorType>(LHS->getType());
auto *RHSType = cast<VectorType>(RHS->getType());
auto *ReturnType =
FixedVectorType::get(LHSType->getElementType(), LHSRows * RHSColumns);
Value *Ops[] = {LHS, RHS, B.getInt32(LHSRows), B.getInt32(LHSColumns),
B.getInt32(RHSColumns)};
Type *OverloadedTypes[] = {ReturnType, LHSType, RHSType};
Function *TheFn = Intrinsic::getDeclaration(
getModule(), Intrinsic::matrix_multiply, OverloadedTypes);
return B.CreateCall(TheFn->getFunctionType(), TheFn, Ops, Name);
}
/// Insert a single element \p NewVal into \p Matrix at indices (\p RowIdx, \p
/// ColumnIdx).
Value *CreateMatrixInsert(Value *Matrix, Value *NewVal, Value *RowIdx,
Value *ColumnIdx, unsigned NumRows) {
return B.CreateInsertElement(
Matrix, NewVal,
B.CreateAdd(B.CreateMul(ColumnIdx, ConstantInt::get(
ColumnIdx->getType(), NumRows)),
RowIdx));
}
/// Add matrixes \p LHS and \p RHS. Support both integer and floating point
/// matrixes.
Value *CreateAdd(Value *LHS, Value *RHS) {
assert(LHS->getType()->isVectorTy() || RHS->getType()->isVectorTy());
if (LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy()) {
assert(!isa<ScalableVectorType>(LHS->getType()) &&
"LHS Assumed to be fixed width");
RHS = B.CreateVectorSplat(
cast<VectorType>(LHS->getType())->getElementCount(), RHS,
"scalar.splat");
} else if (!LHS->getType()->isVectorTy() && RHS->getType()->isVectorTy()) {
assert(!isa<ScalableVectorType>(RHS->getType()) &&
"RHS Assumed to be fixed width");
LHS = B.CreateVectorSplat(
cast<VectorType>(RHS->getType())->getElementCount(), LHS,
"scalar.splat");
}
return cast<VectorType>(LHS->getType())
->getElementType()
->isFloatingPointTy()
? B.CreateFAdd(LHS, RHS)
: B.CreateAdd(LHS, RHS);
}
/// Subtract matrixes \p LHS and \p RHS. Support both integer and floating
/// point matrixes.
Value *CreateSub(Value *LHS, Value *RHS) {
assert(LHS->getType()->isVectorTy() || RHS->getType()->isVectorTy());
if (LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy()) {
assert(!isa<ScalableVectorType>(LHS->getType()) &&
"LHS Assumed to be fixed width");
RHS = B.CreateVectorSplat(
cast<VectorType>(LHS->getType())->getElementCount(), RHS,
"scalar.splat");
} else if (!LHS->getType()->isVectorTy() && RHS->getType()->isVectorTy()) {
assert(!isa<ScalableVectorType>(RHS->getType()) &&
"RHS Assumed to be fixed width");
LHS = B.CreateVectorSplat(
cast<VectorType>(RHS->getType())->getElementCount(), LHS,
"scalar.splat");
}
return cast<VectorType>(LHS->getType())
->getElementType()
->isFloatingPointTy()
? B.CreateFSub(LHS, RHS)
: B.CreateSub(LHS, RHS);
}
/// Multiply matrix \p LHS with scalar \p RHS or scalar \p LHS with matrix \p
/// RHS.
Value *CreateScalarMultiply(Value *LHS, Value *RHS) {
std::tie(LHS, RHS) = splatScalarOperandIfNeeded(LHS, RHS);
if (LHS->getType()->getScalarType()->isFloatingPointTy())
return B.CreateFMul(LHS, RHS);
return B.CreateMul(LHS, RHS);
}
/// Divide matrix \p LHS by scalar \p RHS. If the operands are integers, \p
/// IsUnsigned indicates whether UDiv or SDiv should be used.
Value *CreateScalarDiv(Value *LHS, Value *RHS, bool IsUnsigned) {
assert(LHS->getType()->isVectorTy() && !RHS->getType()->isVectorTy());
assert(!isa<ScalableVectorType>(LHS->getType()) &&
"LHS Assumed to be fixed width");
RHS =
B.CreateVectorSplat(cast<VectorType>(LHS->getType())->getElementCount(),
RHS, "scalar.splat");
return cast<VectorType>(LHS->getType())
->getElementType()
->isFloatingPointTy()
? B.CreateFDiv(LHS, RHS)
: (IsUnsigned ? B.CreateUDiv(LHS, RHS) : B.CreateSDiv(LHS, RHS));
}
/// Create an assumption that \p Idx is less than \p NumElements.
void CreateIndexAssumption(Value *Idx, unsigned NumElements,
Twine const &Name = "") {
Value *NumElts =
B.getIntN(Idx->getType()->getScalarSizeInBits(), NumElements);
auto *Cmp = B.CreateICmpULT(Idx, NumElts);
if (auto *ConstCond = dyn_cast<ConstantInt>(Cmp))
assert(ConstCond->isOne() && "Index must be valid!");
else
B.CreateAssumption(Cmp);
}
/// Compute the index to access the element at (\p RowIdx, \p ColumnIdx) from
/// a matrix with \p NumRows embedded in a vector.
Value *CreateIndex(Value *RowIdx, Value *ColumnIdx, unsigned NumRows,
Twine const &Name = "") {
unsigned MaxWidth = std::max(RowIdx->getType()->getScalarSizeInBits(),
ColumnIdx->getType()->getScalarSizeInBits());
Type *IntTy = IntegerType::get(RowIdx->getType()->getContext(), MaxWidth);
RowIdx = B.CreateZExt(RowIdx, IntTy);
ColumnIdx = B.CreateZExt(ColumnIdx, IntTy);
Value *NumRowsV = B.getIntN(MaxWidth, NumRows);
return B.CreateAdd(B.CreateMul(ColumnIdx, NumRowsV), RowIdx);
}
};
} // end namespace llvm
#endif // LLVM_IR_MATRIXBUILDER_H
|