1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
//===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the TargetMachine and LLVMTargetMachine classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETMACHINE_H
#define LLVM_TARGET_TARGETMACHINE_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/PGOOptions.h"
#include "llvm/Target/CGPassBuilderOption.h"
#include "llvm/Target/TargetOptions.h"
#include <string>
#include <utility>
namespace llvm {
class AAManager;
template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
class PassManager;
using ModulePassManager = PassManager<Module>;
class Function;
class GlobalValue;
class MachineFunctionPassManager;
class MachineFunctionAnalysisManager;
class MachineModuleInfoWrapperPass;
class Mangler;
class MCAsmInfo;
class MCContext;
class MCInstrInfo;
class MCRegisterInfo;
class MCStreamer;
class MCSubtargetInfo;
class MCSymbol;
class raw_pwrite_stream;
class PassBuilder;
class PassManagerBuilder;
struct PerFunctionMIParsingState;
class SMDiagnostic;
class SMRange;
class Target;
class TargetIntrinsicInfo;
class TargetIRAnalysis;
class TargetTransformInfo;
class TargetLoweringObjectFile;
class TargetPassConfig;
class TargetSubtargetInfo;
// The old pass manager infrastructure is hidden in a legacy namespace now.
namespace legacy {
class PassManagerBase;
}
using legacy::PassManagerBase;
namespace yaml {
struct MachineFunctionInfo;
}
//===----------------------------------------------------------------------===//
///
/// Primary interface to the complete machine description for the target
/// machine. All target-specific information should be accessible through this
/// interface.
///
class TargetMachine {
protected: // Can only create subclasses.
TargetMachine(const Target &T, StringRef DataLayoutString,
const Triple &TargetTriple, StringRef CPU, StringRef FS,
const TargetOptions &Options);
/// The Target that this machine was created for.
const Target &TheTarget;
/// DataLayout for the target: keep ABI type size and alignment.
///
/// The DataLayout is created based on the string representation provided
/// during construction. It is kept here only to avoid reparsing the string
/// but should not really be used during compilation, because it has an
/// internal cache that is context specific.
const DataLayout DL;
/// Triple string, CPU name, and target feature strings the TargetMachine
/// instance is created with.
Triple TargetTriple;
std::string TargetCPU;
std::string TargetFS;
Reloc::Model RM = Reloc::Static;
CodeModel::Model CMModel = CodeModel::Small;
CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
/// Contains target specific asm information.
std::unique_ptr<const MCAsmInfo> AsmInfo;
std::unique_ptr<const MCRegisterInfo> MRI;
std::unique_ptr<const MCInstrInfo> MII;
std::unique_ptr<const MCSubtargetInfo> STI;
unsigned RequireStructuredCFG : 1;
unsigned O0WantsFastISel : 1;
// PGO related tunables.
Optional<PGOOptions> PGOOption = None;
public:
const TargetOptions DefaultOptions;
mutable TargetOptions Options;
TargetMachine(const TargetMachine &) = delete;
void operator=(const TargetMachine &) = delete;
virtual ~TargetMachine();
const Target &getTarget() const { return TheTarget; }
const Triple &getTargetTriple() const { return TargetTriple; }
StringRef getTargetCPU() const { return TargetCPU; }
StringRef getTargetFeatureString() const { return TargetFS; }
void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); }
/// Virtual method implemented by subclasses that returns a reference to that
/// target's TargetSubtargetInfo-derived member variable.
virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
return nullptr;
}
virtual TargetLoweringObjectFile *getObjFileLowering() const {
return nullptr;
}
/// Allocate and return a default initialized instance of the YAML
/// representation for the MachineFunctionInfo.
virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
return nullptr;
}
/// Allocate and initialize an instance of the YAML representation of the
/// MachineFunctionInfo.
virtual yaml::MachineFunctionInfo *
convertFuncInfoToYAML(const MachineFunction &MF) const {
return nullptr;
}
/// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
PerFunctionMIParsingState &PFS,
SMDiagnostic &Error,
SMRange &SourceRange) const {
return false;
}
/// This method returns a pointer to the specified type of
/// TargetSubtargetInfo. In debug builds, it verifies that the object being
/// returned is of the correct type.
template <typename STC> const STC &getSubtarget(const Function &F) const {
return *static_cast<const STC*>(getSubtargetImpl(F));
}
/// Create a DataLayout.
const DataLayout createDataLayout() const { return DL; }
/// Test if a DataLayout if compatible with the CodeGen for this target.
///
/// The LLVM Module owns a DataLayout that is used for the target independent
/// optimizations and code generation. This hook provides a target specific
/// check on the validity of this DataLayout.
bool isCompatibleDataLayout(const DataLayout &Candidate) const {
return DL == Candidate;
}
/// Get the pointer size for this target.
///
/// This is the only time the DataLayout in the TargetMachine is used.
unsigned getPointerSize(unsigned AS) const {
return DL.getPointerSize(AS);
}
unsigned getPointerSizeInBits(unsigned AS) const {
return DL.getPointerSizeInBits(AS);
}
unsigned getProgramPointerSize() const {
return DL.getPointerSize(DL.getProgramAddressSpace());
}
unsigned getAllocaPointerSize() const {
return DL.getPointerSize(DL.getAllocaAddrSpace());
}
/// Reset the target options based on the function's attributes.
// FIXME: Remove TargetOptions that affect per-function code generation
// from TargetMachine.
void resetTargetOptions(const Function &F) const;
/// Return target specific asm information.
const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
/// If intrinsic information is available, return it. If not, return null.
virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
return nullptr;
}
bool requiresStructuredCFG() const { return RequireStructuredCFG; }
void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
/// Returns the code generation relocation model. The choices are static, PIC,
/// and dynamic-no-pic, and target default.
Reloc::Model getRelocationModel() const;
/// Returns the code model. The choices are small, kernel, medium, large, and
/// target default.
CodeModel::Model getCodeModel() const;
bool isPositionIndependent() const;
bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
/// Returns true if this target uses emulated TLS.
bool useEmulatedTLS() const;
/// Returns the TLS model which should be used for the given global variable.
TLSModel::Model getTLSModel(const GlobalValue *GV) const;
/// Returns the optimization level: None, Less, Default, or Aggressive.
CodeGenOpt::Level getOptLevel() const;
/// Overrides the optimization level.
void setOptLevel(CodeGenOpt::Level Level);
void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
bool getO0WantsFastISel() { return O0WantsFastISel; }
void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
void setGlobalISelAbort(GlobalISelAbortMode Mode) {
Options.GlobalISelAbort = Mode;
}
void setMachineOutliner(bool Enable) {
Options.EnableMachineOutliner = Enable;
}
void setSupportsDefaultOutlining(bool Enable) {
Options.SupportsDefaultOutlining = Enable;
}
void setSupportsDebugEntryValues(bool Enable) {
Options.SupportsDebugEntryValues = Enable;
}
bool getAIXExtendedAltivecABI() const {
return Options.EnableAIXExtendedAltivecABI;
}
bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
/// Return true if unique basic block section names must be generated.
bool getUniqueBasicBlockSectionNames() const {
return Options.UniqueBasicBlockSectionNames;
}
/// Return true if data objects should be emitted into their own section,
/// corresponds to -fdata-sections.
bool getDataSections() const {
return Options.DataSections;
}
/// Return true if functions should be emitted into their own section,
/// corresponding to -ffunction-sections.
bool getFunctionSections() const {
return Options.FunctionSections;
}
/// Return true if visibility attribute should not be emitted in XCOFF,
/// corresponding to -mignore-xcoff-visibility.
bool getIgnoreXCOFFVisibility() const {
return Options.IgnoreXCOFFVisibility;
}
/// Return true if XCOFF traceback table should be emitted,
/// corresponding to -xcoff-traceback-table.
bool getXCOFFTracebackTable() const { return Options.XCOFFTracebackTable; }
/// If basic blocks should be emitted into their own section,
/// corresponding to -fbasic-block-sections.
llvm::BasicBlockSection getBBSectionsType() const {
return Options.BBSections;
}
/// Get the list of functions and basic block ids that need unique sections.
const MemoryBuffer *getBBSectionsFuncListBuf() const {
return Options.BBSectionsFuncListBuf.get();
}
/// Returns true if a cast between SrcAS and DestAS is a noop.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
return false;
}
void setPGOOption(Optional<PGOOptions> PGOOpt) { PGOOption = PGOOpt; }
const Optional<PGOOptions> &getPGOOption() const { return PGOOption; }
/// If the specified generic pointer could be assumed as a pointer to a
/// specific address space, return that address space.
///
/// Under offloading programming, the offloading target may be passed with
/// values only prepared on the host side and could assume certain
/// properties.
virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
/// If the specified predicate checks whether a generic pointer falls within
/// a specified address space, return that generic pointer and the address
/// space being queried.
///
/// Such predicates could be specified in @llvm.assume intrinsics for the
/// optimizer to assume that the given generic pointer always falls within
/// the address space based on that predicate.
virtual std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value *V) const {
return std::make_pair(nullptr, -1);
}
/// Get a \c TargetIRAnalysis appropriate for the target.
///
/// This is used to construct the new pass manager's target IR analysis pass,
/// set up appropriately for this target machine. Even the old pass manager
/// uses this to answer queries about the IR.
TargetIRAnalysis getTargetIRAnalysis();
/// Return a TargetTransformInfo for a given function.
///
/// The returned TargetTransformInfo is specialized to the subtarget
/// corresponding to \p F.
virtual TargetTransformInfo getTargetTransformInfo(const Function &F);
/// Allow the target to modify the pass manager, e.g. by calling
/// PassManagerBuilder::addExtension.
virtual void adjustPassManager(PassManagerBuilder &) {}
/// Allow the target to modify the pass pipeline with New Pass Manager
/// (similar to adjustPassManager for Legacy Pass manager).
virtual void registerPassBuilderCallbacks(PassBuilder &) {}
/// Allow the target to register alias analyses with the AAManager for use
/// with the new pass manager. Only affects the "default" AAManager.
virtual void registerDefaultAliasAnalyses(AAManager &) {}
/// Add passes to the specified pass manager to get the specified file
/// emitted. Typically this will involve several steps of code generation.
/// This method should return true if emission of this file type is not
/// supported, or false on success.
/// \p MMIWP is an optional parameter that, if set to non-nullptr,
/// will be used to set the MachineModuloInfo for this PM.
virtual bool
addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
raw_pwrite_stream *, CodeGenFileType,
bool /*DisableVerify*/ = true,
MachineModuleInfoWrapperPass *MMIWP = nullptr) {
return true;
}
/// Add passes to the specified pass manager to get machine code emitted with
/// the MCJIT. This method returns true if machine code is not supported. It
/// fills the MCContext Ctx pointer which can be used to build custom
/// MCStreamer.
///
virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
raw_pwrite_stream &,
bool /*DisableVerify*/ = true) {
return true;
}
/// True if subtarget inserts the final scheduling pass on its own.
///
/// Branch relaxation, which must happen after block placement, can
/// on some targets (e.g. SystemZ) expose additional post-RA
/// scheduling opportunities.
virtual bool targetSchedulesPostRAScheduling() const { return false; };
void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
MCSymbol *getSymbol(const GlobalValue *GV) const;
/// The integer bit size to use for SjLj based exception handling.
static constexpr unsigned DefaultSjLjDataSize = 32;
virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }
static std::pair<int, int> parseBinutilsVersion(StringRef Version);
};
/// This class describes a target machine that is implemented with the LLVM
/// target-independent code generator.
///
class LLVMTargetMachine : public TargetMachine {
protected: // Can only create subclasses.
LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, Reloc::Model RM,
CodeModel::Model CM, CodeGenOpt::Level OL);
void initAsmInfo();
public:
/// Get a TargetTransformInfo implementation for the target.
///
/// The TTI returned uses the common code generator to answer queries about
/// the IR.
TargetTransformInfo getTargetTransformInfo(const Function &F) override;
/// Create a pass configuration object to be used by addPassToEmitX methods
/// for generating a pipeline of CodeGen passes.
virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
/// Add passes to the specified pass manager to get the specified file
/// emitted. Typically this will involve several steps of code generation.
/// \p MMIWP is an optional parameter that, if set to non-nullptr,
/// will be used to set the MachineModuloInfo for this PM.
bool
addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
bool DisableVerify = true,
MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
virtual Error buildCodeGenPipeline(ModulePassManager &,
MachineFunctionPassManager &,
MachineFunctionAnalysisManager &,
raw_pwrite_stream &, raw_pwrite_stream *,
CodeGenFileType, CGPassBuilderOption,
PassInstrumentationCallbacks *) {
return make_error<StringError>("buildCodeGenPipeline is not overriden",
inconvertibleErrorCode());
}
virtual std::pair<StringRef, bool> getPassNameFromLegacyName(StringRef) {
llvm_unreachable(
"getPassNameFromLegacyName parseMIRPipeline is not overriden");
}
/// Add passes to the specified pass manager to get machine code emitted with
/// the MCJIT. This method returns true if machine code is not supported. It
/// fills the MCContext Ctx pointer which can be used to build custom
/// MCStreamer.
bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
raw_pwrite_stream &Out,
bool DisableVerify = true) override;
/// Returns true if the target is expected to pass all machine verifier
/// checks. This is a stopgap measure to fix targets one by one. We will
/// remove this at some point and always enable the verifier when
/// EXPENSIVE_CHECKS is enabled.
virtual bool isMachineVerifierClean() const { return true; }
/// Adds an AsmPrinter pass to the pipeline that prints assembly or
/// machine code from the MI representation.
bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
MCContext &Context);
Expected<std::unique_ptr<MCStreamer>>
createMCStreamer(raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
CodeGenFileType FileType, MCContext &Ctx);
/// True if the target uses physical regs (as nearly all targets do). False
/// for stack machines such as WebAssembly and other virtual-register
/// machines. If true, all vregs must be allocated before PEI. If false, then
/// callee-save register spilling and scavenging are not needed or used. If
/// false, implicitly defined registers will still be assumed to be physical
/// registers, except that variadic defs will be allocated vregs.
virtual bool usesPhysRegsForValues() const { return true; }
/// True if the target wants to use interprocedural register allocation by
/// default. The -enable-ipra flag can be used to override this.
virtual bool useIPRA() const {
return false;
}
/// The default variant to use in unqualified `asm` instructions.
/// If this returns 0, `asm "$(foo$|bar$)"` will evaluate to `asm "foo"`.
virtual int unqualifiedInlineAsmVariant() const { return 0; }
};
/// Helper method for getting the code model, returning Default if
/// CM does not have a value. The tiny and kernel models will produce
/// an error, so targets that support them or require more complex codemodel
/// selection logic should implement and call their own getEffectiveCodeModel.
inline CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
CodeModel::Model Default) {
if (CM) {
// By default, targets do not support the tiny and kernel models.
if (*CM == CodeModel::Tiny)
report_fatal_error("Target does not support the tiny CodeModel", false);
if (*CM == CodeModel::Kernel)
report_fatal_error("Target does not support the kernel CodeModel", false);
return *CM;
}
return Default;
}
} // end namespace llvm
#endif // LLVM_TARGET_TARGETMACHINE_H
|