File: Predict.R

package info (click to toggle)
car 3.1-3-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,520 kB
  • sloc: makefile: 2
file content (225 lines) | stat: -rw-r--r-- 7,801 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# 2017-11-07: added complete=FALSE to vcov.() call

exists.method <- function(generic, object, default=TRUE, strict=FALSE){
  # this function copied from the Rcmdr package; won't be exported
  classes <- class(object)
  if (default) classes <- c(classes, "default")
  if (strict) classes <- classes[1]
  any(paste(generic, ".", classes, sep="") %in%
        as.character(methods(generic)))
}

Predict <- function(object, ...){
  if (exists.method("Predict", object, strict=TRUE))
    UseMethod("Predict")
  else if (!exists.method("predict", object, strict=TRUE) && exists.method("Predict", object))
    UseMethod("Predict")
  else UseMethod("predict")
}

# Predict.default <- function(object, ...){ # doesn't work correctly
#   UseMethod("predict")
# }

Predict.lm <-function (object, newdata, se.fit = FALSE, scale = NULL, df = Inf, 
                       interval = c("none", "confidence", "prediction"), level = 0.95, 
                       type = c("response", "terms"), terms = NULL, na.action = na.pass, 
                       pred.var = res.var/weights, weights = 1, vcov., ...) {
  # modified version of stats::predict.lm()
  # the next two local functions copied from stats package
  qr.lm <- function (x, ...) {
    if (is.null(r <- x$qr)) 
      stop("lm object does not have a proper 'qr' component.\n Rank zero or should not have used lm(.., qr=FALSE).")
    r
  }
  weights.default <- function (object, ...) {
    wts <- object$weights
    if (is.null(wts)) 
      wts
    else napredict(object$na.action, wts)
  }
  tt <- terms(object)
  if (!inherits(object, "lm")) 
    warning("calling predict.lm(<fake-lm-object>) ...")
  if (missing(newdata) || is.null(newdata)) {
    mm <- X <- model.matrix(object)
    mmDone <- TRUE
    offset <- object$offset
  }
  else {
    Terms <- delete.response(tt)
    m <- model.frame(Terms, newdata, na.action = na.action, 
                     xlev = object$xlevels)
    if (!is.null(cl <- attr(Terms, "dataClasses"))) 
      .checkMFClasses(cl, m)
    X <- model.matrix(Terms, m, contrasts.arg = object$contrasts)
    offset <- rep(0, nrow(X))
    if (!is.null(off.num <- attr(tt, "offset"))) 
      for (i in off.num) offset <- offset + eval(attr(tt, "variables")[[i + 1]], newdata)
    if (!is.null(object$call$offset)) 
      offset <- offset + eval(object$call$offset, newdata)
    mmDone <- FALSE
  }
  n <- length(object$residuals)
  p <- object$rank
  p1 <- seq_len(p)
  piv <- if (p) 
    qr.lm(object)$pivot[p1]
  if (p < ncol(X) && !(missing(newdata) || is.null(newdata))) 
    warning("prediction from a rank-deficient fit may be misleading")
  beta <- object$coefficients
  predictor <- drop(X[, piv, drop = FALSE] %*% beta[piv])
  if (!is.null(offset)) 
    predictor <- predictor + offset
  interval <- match.arg(interval)
  if (interval == "prediction") {
    if (missing(newdata)) 
      warning("predictions on current data refer to _future_ responses\n")
    if (missing(newdata) && missing(weights)) {
      w <- weights.default(object)
      if (!is.null(w)) {
        weights <- w
        warning("assuming prediction variance inversely proportional to weights used for fitting\n")
      }
    }
    if (!missing(newdata) && missing(weights) && !is.null(object$weights) && 
        missing(pred.var)) 
      warning("Assuming constant prediction variance even though model fit is weighted\n")
    if (inherits(weights, "formula")) {
      if (length(weights) != 2L) 
        stop("'weights' as formula should be one-sided")
      d <- if (missing(newdata) || is.null(newdata)) 
        model.frame(object)
      else newdata
      weights <- eval(weights[[2L]], d, environment(weights))
    }
  }
  type <- match.arg(type)
  if (se.fit || interval != "none") {
    w <- object$weights
    res.var <- if (is.null(scale)) {
      r <- object$residuals
      rss <- sum(if (is.null(w)) r^2 else r^2 * w)
      df <- object$df.residual
      rss/df
    }
    else scale^2
    if (type != "terms") {
      if (p > 0) {
        if (missing(vcov.)){
          XRinv <- if (missing(newdata) && is.null(w)) 
            qr.Q(qr.lm(object))[, p1, drop = FALSE]
          else X[, piv] %*% qr.solve(qr.R(qr.lm(object))[p1, p1])
          ip <- drop(XRinv^2 %*% rep(res.var, p))
        }
        else{
          V <- if (is.function(vcov.)) vcov.(object)
          else if (is.matrix(vcov.)) vcov.
          else stop("vcov. must be a function or a matrix")
          if (p < ncol(X)){
            # rank-deficient case
            b <- coef(object)
            nms <- names(b[!is.na(b)])
            X <- X[, nms]
          }
          ip <- diag(X %*% V %*% t(X))
        }
      }
      else ip <- rep(0, n)
    }
  }
  if (type == "terms") {
    if (!missing(vcov.)) warning("vcov. argument not used for type='terms'")
    if (!mmDone) {
      mm <- model.matrix(object)
      mmDone <- TRUE
    }
    aa <- attr(mm, "assign")
    ll <- attr(tt, "term.labels")
    hasintercept <- attr(tt, "intercept") > 0L
    if (hasintercept) 
      ll <- c("(Intercept)", ll)
    aaa <- factor(aa, labels = ll)
    asgn <- split(order(aa), aaa)
    if (hasintercept) {
      asgn$"(Intercept)" <- NULL
      avx <- colMeans(mm)
      termsconst <- sum(avx[piv] * beta[piv])
    }
    nterms <- length(asgn)
    if (nterms > 0) {
      predictor <- matrix(ncol = nterms, nrow = NROW(X))
      dimnames(predictor) <- list(rownames(X), names(asgn))
      if (se.fit || interval != "none") {
        ip <- matrix(ncol = nterms, nrow = NROW(X))
        dimnames(ip) <- list(rownames(X), names(asgn))
        Rinv <- qr.solve(qr.R(qr.lm(object))[p1, p1])
      }
      if (hasintercept) 
        X <- sweep(X, 2L, avx, check.margin = FALSE)
      unpiv <- rep.int(0L, NCOL(X))
      unpiv[piv] <- p1
      for (i in seq.int(1L, nterms, length.out = nterms)) {
        iipiv <- asgn[[i]]
        ii <- unpiv[iipiv]
        iipiv[ii == 0L] <- 0L
        predictor[, i] <- if (any(iipiv > 0L)) 
          X[, iipiv, drop = FALSE] %*% beta[iipiv]
        else 0
        if (se.fit || interval != "none") 
          ip[, i] <- if (any(iipiv > 0L)) 
            as.matrix(X[, iipiv, drop = FALSE] %*% 
                        Rinv[ii, , drop = FALSE])^2 %*% rep.int(res.var, p)
        else 0
      }
      if (!is.null(terms)) {
        predictor <- predictor[, terms, drop = FALSE]
        if (se.fit) 
          ip <- ip[, terms, drop = FALSE]
      }
    }
    else {
      predictor <- ip <- matrix(0, n, 0L)
    }
    attr(predictor, "constant") <- if (hasintercept) 
      termsconst
    else 0
  }
  if (interval != "none") {
    tfrac <- qt((1 - level)/2, df)
    hwid <- tfrac * switch(interval, confidence = sqrt(ip), 
                           prediction = sqrt(ip + pred.var))
    if (type != "terms") {
      predictor <- cbind(predictor, predictor + hwid %o% 
                           c(1, -1))
      colnames(predictor) <- c("fit", "lwr", "upr")
    }
    else {
      if (!is.null(terms)) 
        hwid <- hwid[, terms, drop = FALSE]
      lwr <- predictor + hwid
      upr <- predictor - hwid
    }
  }
  if (se.fit || interval != "none") {
    se <- sqrt(ip)
    if (type == "terms" && !is.null(terms) && !se.fit) 
      se <- se[, terms, drop = FALSE]
  }
  if (missing(newdata) && !is.null(na.act <- object$na.action)) {
    predictor <- napredict(na.act, predictor)
    if (se.fit) 
      se <- napredict(na.act, se)
  }
  if (type == "terms" && interval != "none") {
    if (missing(newdata) && !is.null(na.act)) {
      lwr <- napredict(na.act, lwr)
      upr <- napredict(na.act, upr)
    }
    list(fit = predictor, se.fit = se, lwr = lwr, upr = upr, 
         df = df, residual.scale = sqrt(res.var))
  }
  else if (se.fit) 
    list(fit = predictor, se.fit = se, df = df, residual.scale = sqrt(res.var))
  else predictor
}