File: bcnPower.R

package info (click to toggle)
car 3.1-3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,520 kB
  • sloc: makefile: 2
file content (482 lines) | stat: -rw-r--r-- 19,432 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# 05-02-2017:  bcnPower family, replacing skewPower.  S. Weisberg
# 2017-05-18: Changed summary.powerTransform; deleted invalid test; added roundlam to output
# 2017-12-19: Deleted plot method
# 2017-12-19: Improved handling of gamma small case, still not great for the
#             multivariate extenstion.  Works for lm and lmer
# 2017-12-25: bug fix with multivariace bcnPower
# 2019-03-07: bug fix in estimateTransform.bcnPowerlmer, thanks to wouter@zoology.ubc.ca
# 2019-11-14,15: change class(x) == "y" to inherits(x, "y") and likewise for !=

bcnPower <- function(U, lambda, jacobian.adjusted=FALSE, gamma) {
  if(is.matrix(U)){
    if(dim(U)[2] != length(lambda) | dim(U)[2] != length(gamma))
      stop("gamma and lambda must have length equal to number of columns in U")
  } else {
    if(length(gamma) != 1 | length(lambda) != 1)
      stop("gamma and lambda must be length 1")
  }
  if(any(gamma < 0)) stop("gamma must be >= 0")
  hc1 <- function(U, lambda, gamma){
    if(abs(gamma) <= 1.e-10 & any(U[!is.na(U)] <= 0))
      stop("First argument must be strictly positive if gamma = 0.")
    s <- sqrt(U^2 + gamma^2)
    z <- if (abs(lambda) <= 1.e-10)
      log(.5*(U + s)) else ((.5*(U + s))^lambda - 1)/lambda
    if (jacobian.adjusted == TRUE) {
      Jn <- (.5^lambda) *
        (exp((lambda - 1) * mean(log(U + s), na.rm=TRUE))) *
        (exp(mean(log(1 + U/s), na.rm=TRUE)))
      z <- z/Jn}
    z
  }
  out <- U
  out <- if(is.matrix(out) | is.data.frame(out)){
    if(is.null(colnames(out)))
      colnames(out) <- paste("Z", 1:dim(out)[2], sep="")
    for (j in 1:ncol(out)) {out[, j] <- hc1(out[, j], lambda[j], gamma[j]) }
    colnames(out) <- paste(colnames(out), "(",
                           round(lambda, 2), ",",round(gamma, 1),")", sep="")
    #    colnames(out) <- paste(colnames(out), round(lambda, 2), sep="^")
    out}  else
      hc1(out, lambda, gamma)
  out}

bcnPowerInverse <- function(z, lambda, gamma){
  q <- if(abs(lambda) < 1.e-7) 2 * exp(z) else 2 * (lambda*z + 1)^(1/lambda)
  (q^2 - gamma^2)/(2 * q)
}

###############################################################################
# estimateTransform and methods
#

# multivariate box-cox with negatives starting values, given X and Y
bcn.sv <- function(X, Y, weights, itmax=100, conv=.0001, verbose=FALSE,
                   start=TRUE, gamma.min=.1){
  Y <- as.matrix(Y)
  d <- dim(Y)[2]
  if(d > 1) stop("bcn.sv requires a univariate response")
  lambda.1d <- function(Y, weights, lambda, gamma, xqr){
    fn <- function(lam) bcnPowerllik(NULL, Y, weights, lambda=lam,
                                     gamma=gamma, xqr=xqr)$llik
    f <- optimize(f=fn, interval=c(-3, 3), maximum=TRUE)
    list(lambda=f$maximum, gamma=gamma, llik=f$objective)
  }
  gamma.1d <- function(Y, weights, lambda, gamma, xqr){
    fn1 <- function(gam) bcnPowerllik(NULL, Y, weights, lambda=lambda,
                                     gamma=gam, xqr=xqr)$llik
    f <- optimize(f=fn1, interval=c(0.01, max(Y)), maximum=TRUE)
    list(lambda=lambda, gamma=f$maximum, llik=f$objective)
  }
  # get qr decomposition
  w <- if(is.null(weights)) 1 else sqrt(weights)
  xqr <- qr(w * as.matrix(X))
  # get starting value for gamma
  gamma <- if(min(Y) <= 0) max(min(Y[Y>0]), 5*gamma.min) else 0
  res <- lambda.1d(Y, weights, lambda=1, gamma=gamma, xqr)
  res <- gamma.1d(Y, weights, lambda=res$lambda, gamma=res$gamma, xqr)
  # set iteration counter
  i <- 0
  crit <- 1
  gamma.ok <- TRUE
  while( (crit > conv) & (i < itmax) & gamma.ok) {
    i <- i+1
    last.value <- res
    res <- lambda.1d(Y, weights, res$lambda, res$gamma, xqr)
    res <- gamma.1d(Y, weights, res$lambda, res$gamma, xqr)
    if(res$gamma < 1.5 * gamma.min){
      gamma.ok <- FALSE
      res <- lambda.1d(Y, weights, res$lambda, gamma.min, xqr)
    }
    crit <- (res$llik - last.value$llik)/abs(res$llik)
    if(verbose)
      print(data.frame(Iter=i, gamma=res$gamma,
            lambda=res$gamma, llik=res$llik, crit=crit))
  }
  if(i==itmax & conv > crit)
    warning(paste("No convergence in", itmax, "iterations, criterion =", crit, collapse=" "))
#  if(!gamma.ok) warning(paste("gamma too close to zero, set to", gamma.min, collapse=" "))
  if(start == TRUE)  return(c(res, gamma.estimated=gamma.ok)) else {
# compute the Hessian -- depends on gamma.ok
  if(gamma.ok){
    fn2 <- function(param){
      lam <- param[1]
      gam <- param[2]
      bcnPowerllik(NULL, Y, weights, lam, gam, xqr=xqr)$llik
    }
    hess <- optimHess(c(res$lambda, res$gamma), fn2)
    res$invHess <- solve(-hess)} else{
# gamma.ok == FALSE
      fn3 <- function(lam){
        lam
        bcnPowerllik(NULL, Y, weights, lam, gamma.min, xqr=xqr)$llik
      }
      hess <- optimHess(res$lambda, fn3)
      res$invHess <- matrix(c(-1/hess, NA, NA, NA), ncol=2)}
# end computing of invHess
    rownames(res$invHess) <- colnames(res$invHess) <- c("lambda", "gamma")
    roundlam <- res$lambda
    stderr <- sqrt(diag(res$invHess[1, 1, drop=FALSE]))
    stderr.gam <- sqrt(diag(res$invHess[2, 2, drop=FALSE]))
    lamL <- roundlam - 1.96 * stderr
    lamU <- roundlam + 1.96 * stderr
    for (val in rev(c(1, 0, -1, .5, .33, -.5, -.33, 2, -2))) {
      sel <- lamL <= val & val <= lamU
      roundlam[sel] <- val
    }
    res$roundlam <- roundlam
    res$ylabs <-
      if (is.null(colnames(Y))) paste("Y", 1:dim(as.matrix(Y))[2], sep="") else colnames(Y)
    res$xqr <- xqr
    res$y <- as.matrix(Y)
    res$x <- as.matrix(X)
    res$weights <- weights
    res$family <- "bcnPowerTransform"
    res$y
    res$gamma.estimated <- gamma.ok
    class(res) <- c("bcnPowerTransform", "powerTransform")
    res}
}

estimateTransform.bcnPower <- function(X, Y, weights,
          itmax=100, conv=.0001, verbose=FALSE, gamma.min=.1){
  d <- dim(as.matrix(Y))[2]
  skf.lambda <- function(Y, weights, lambda, gamma, xqr){
    fn3a <- function(lam) bcnPowerllik(NULL, Y, weights, lambda=lam,
                                     gamma=gamma, xqr=xqr)$llik
    f <- optim(par=lambda, fn=fn3a, method="L-BFGS-B",
                 lower=rep(-3, d), upper=rep(3, d),
                 control=list(fnscale=-1))
    list(lambda=f$par, gamma=gamma, llik=f$value, conv=f$convergence, message=f$message)
  }
  skf.gamma <- function(Y, weights, lambda, gamma, xqr){
    fn3b <- function(gam) bcnPowerllik(NULL, Y, weights, lambda=lambda,
                                     gamma=gam, xqr=xqr)$llik
    f <- optim(par=gamma, fn=fn3b, method="L-BFGS-B",
                 lower=rep(gamma.min, d),
                 upper=rep(Inf, d),
                 control=list(fnscale=-1))
      list(lambda=lambda, gamma=f$par, llik=f$value,
           conv=f$convergence, message=f$message)
  }
# get qr decomposition once
  w <- if(is.null(weights)) 1 else sqrt(weights)
  xqr <- qr(w * as.matrix(X))
# if d = 1 call bcn.sv and return, else call bcn.sv to get starting values.
  if(d == 1) bcn.sv(X, Y, weights, start=FALSE) else{
# The rest of this code is for the multivariate case
# get starting values for gamma
  sv <- apply(Y, 2, function(y) unlist(bcn.sv(X, y, weights, start=TRUE)))
  res <- as.list(as.data.frame(t(sv))) # output to a list
# gamma.estimated converted to numeric, so fixup
  res$gamma.estimated <- ifelse(res$gamma.estimated==1, TRUE, FALSE)
  res$llik <- -Inf
# set iteration counter
  i <- 0
  crit <- 1
# iterate
  while( (crit > conv) & (i < itmax)) {
    i <- i+1
    last.value <- res
    res <- skf.gamma (Y, weights, res$lambda, res$gamma, xqr)
    res <- skf.lambda(Y, weights, res$lambda, res$gamma, xqr)
    crit <- (res$llik - last.value$llik)/abs(res$llik)
    if(verbose)
      print(paste("Iter:", i, "llik=", res$llik, "Crit:", crit, collapse=" "))
  }
  if(itmax == 1) warning("One iteration only, results assume responses are uncorrelated")
#  if(i==itmax & conv > crit)
#    warning(paste("No convergence in", itmax, "iterations, criterion =", crit, collapse=" "))
  fn4 <- function(param){
    lam <- param[1:d]
    gam <- param[(d+1):(2*d)]
    bcnPowerllik(NULL, Y, weights, lam, gam, xqr=xqr)$llik
  }
# check gamma
  gamma.ok <- ifelse(res$gamma > 1.5*gamma.min, TRUE, FALSE)
  res$gamma[!gamma.ok] <- gamma.min
  if(all(gamma.ok)){
     hess <- try(optimHess(c(res$lambda, res$gamma), fn4))
     res$invHess <- if(inherits(hess, "try-error")) NA else solve(-hess)
  } else {
    fn4a <- function(lam) fn4(c(lam, res$gamma))
    hess <- try(optimHess(res$lambda, fn4a)) # hessian for lambda only
    res$invHess <- matrix(NA, nrow=2*d, ncol=2*d)
    res$invHess[1:d, 1:d] <- solve(-hess)
    }
  roundlam <- res$lambda
  stderr <- sqrt(diag(res$invHess[1:d, 1:d, drop=FALSE]))
  stderr.gam <- sqrt(diag(res$invHess[(d+1):(2*d), (d+1):(2*d), drop=FALSE]))
  lamL <- roundlam - 1.96 * stderr
  lamU <- roundlam + 1.96 * stderr
  for (val in rev(c(1, 0, -1, .5, .33, -.5, -.33, 2, -2))) {
    sel <- lamL <= val & val <= lamU
    roundlam[sel] <- val
  }
  res$roundlam <- roundlam
  res$ylabs <-
    if (is.null(colnames(Y))) paste("Y", 1:d, sep="") else colnames(Y)
  invHesslabels <- c(paste(res$ylabs, "lambda", sep=":"),
                     paste(res$ylabs, "gamma", sep=":"))
  if (!inherits(hess, "try-error"))
        rownames(res$invHess) <- colnames(res$invHess) <- invHesslabels
  res$xqr <- xqr
  res$y <- as.matrix(Y)
  res$x <- as.matrix(X)
  res$weights <- weights
  res$family <- "bcnPowerTransform"
  res$y
  class(res) <- c("bcnPowerTransform", "powerTransform")
  res$gamma.estimated <- gamma.ok
  res
}}

#############################################################################
## The log-likelihood function assuming a normal target
## Evaluate bcnPower llik at (lambda, gamma)-----------------------------------
bcnPowerllik <- function(X, Y, weights=NULL, lambda, gamma, xqr=NULL) {
  Y <- as.matrix(Y) # coerces Y to be a matrix.
  w <- if(is.null(weights)) 1 else sqrt(weights)
  xqr <- if(is.null(xqr)){qr(w * as.matrix(X))} else xqr
  nr <- nrow(Y)
  f <- -(nr/2)*log(((nr - 1)/nr) *
      det(as.matrix(var(qr.resid(xqr, w * bcnPower(Y, lambda,
                          jacobian.adjusted=TRUE, gamma=gamma))))))
  list(lambda=lambda, gamma=gamma, llik=f)
}

###############################################################################
# testTransform
testTransform.bcnPowerTransform <- function(object, lambda=rep(1, dim(object$y)[2])){
  d <- length(object$lambda)
  lam <- if(length(lambda)==1) rep(lambda, d) else lambda
  skf.gamma <- function(Y, weights, lambda, gamma, xqr){
    fn5 <- function(gam) bcnPowerllik(NULL, Y, weights, lambda=lam,
                                     gamma=gamma, xqr=xqr)$llik
    f <- optim(par=gamma, fn=fn5, method="L-BFGS-B",
               lower=rep(.Machine$double.eps^0.25, d),
               upper=rep(Inf, d),
               control=list(fnscale=-1))
    list(lambda=lambda, gamma=f$par, llik=f$value, conv=f$convergence,
         message=f$message)
  }
  val <- skf.gamma(object$y, object$weights, lam,
         gamma=object$gamma, xqr=object$xqr)$llik
  LR <- max(0, -2 * (val - object$llik))
  df <- d
  pval <- 1-pchisq(LR, df)
  out <- data.frame(LRT=LR, df=df, pval=pval)
  rownames(out) <-
    c(paste("LR test, lambda = (",
            paste(round(lam, 2), collapse=" "), ")", sep=""))
  out}

print.bcnPowerTransform<-function(x, ...) {
  cat("Estimated transformation power, lambda\n")
  print(x$lambda)
# temporary code
  if(is.null(x$gamma.estimated)) x$gamma.estimated=TRUE
  if(any(x$gamma.estimated)){
    cat("\nEstimated location, gamma\n")} else{
    cat("\nLocation gamma was fixed at its lower bound\n")}
  print(x$gamma)
  invisible(x)}

summary.bcnPowerTransform <- function(object, ...){
  nc <- length(object$lambda)
  label <- paste(if(nc==1) "bcnPower transformation to Normality" else
                   "bcnPower transformation to Multinormality", "\n")
  lambda <- object$lambda
  roundlam <- round(object$roundlam, 3)
  gamma <- object$gamma
  stderr <- sqrt(diag(object$invHess))
  stderr.gamma <- stderr[(nc+1):(2*nc)]
  stderr <- stderr[1:nc]
  result <- cbind(lambda, roundlam, lambda - 1.96*stderr, lambda + 1.96*stderr)
  result.gamma <- cbind(gamma, stderr.gamma, pmax(gamma - 1.96*stderr.gamma, 0), gamma + 1.96*stderr.gamma)
  rownames(result) <- rownames(result.gamma) <- object$ylabs
  colnames(result) <- c("Est Power", "Rounded Pwr", "Wald Lwr Bnd", "Wald Upr Bnd")
  colnames(result.gamma) <-
    c("Est gamma", "Std Err.", "Wald Lower Bound", "Wald Upper Bound")
  tests <- testTransform(object, 0)
  tests <- rbind(tests, testTransform(object, 1))
#  if ( !(all(object$roundlam==0) | all(object$roundlam==1) |
#           length(object$roundlam)==1 | all(object$roundlam == object$lambda)))
#    tests <- rbind(tests, testTransform(object, object$roundlam))
  out <-  list(label=label, result=result, result.gamma=result.gamma,
               tests=tests, gamma.estimated=object$gamma.estimated)
  if(is.null(out$gamma.estimated)) out$gamma.estimated <- TRUE
  class(out) <- "summary.bcnPowerTransform"
  out
}

print.summary.bcnPowerTransform <- function(x,digits=4, ...) {
  cat(x$label)
  cat("\nEstimated power, lambda\n")
  print(round(x$result, digits))
  if(any(x$gamma.estimated)){
     cat("\nEstimated location, gamma\n")} else{
     cat("\nLocation gamma was fixed at its lower bound\n")}
  print(round(x$result.gamma, digits))
  cat("\nLikelihood ratio tests about transformation parameters\n")
  print(x$tests)
  if(any(x$result.gamma[,1] < 1.e-5)) warning(
    "When gamma is zero, transformation family is the Box-Cox Power family")
}

coef.bcnPowerTransform <- function(object, param=c("both", "lambda", "gamma"), round=FALSE, ...){
  param <- match.arg(param)
  co <- cbind(if(round==TRUE) object$roundlam else object$lambda, object$gamma)
  dimnames(co) <- list(object$ylabs, c("lambda", "gamma"))
  switch(param, lambda = co[, 1], gamma=co[, 2], both= co)
}

vcov.bcnPowerTransform <- function(object, param=c("both", "lambda", "gamma"), ...) {
  param <- match.arg(param)
  nc <- length(object$lambda)
  switch(param, lambda=object$invHess[1:nc, 1:nc], gamma=object$invHess[(nc+1):(2*nc), (nc+1):(2*nc)],
         both=object$invHess)
}





##########################################################################################
#  bcnPower for lmer models
#  Modified 12/19/2017 to handle gamma-at-the boundary gracefully
estimateTransform.bcnPowerlmer <- function(object, verbose=FALSE,
            conv=.001, itmax=100, gamma.min=.1, ...) {
  data <- model.frame(object)
  y <- (object@resp)$y
  lambda.1d <- function(lambda, gamma){
    fn6 <- function(lam){
      data$y1 <- bcnPower(y, lambda=lam, jacobian.adjusted=TRUE, gamma)
      logLik(update(object, y1 ~ ., data=data))}
    f <- optimize(f=fn6, interval=c(-3, 3), maximum=TRUE)
    list(lambda=f$maximum, gamma=gamma, llik=f$objective)
  }
  gamma.1d <- function(lambda=lambda, gamma=gamma){
    fn7 <- function(gam){
      data$y1 <- bcnPower(y, lambda, jacobian.adjusted=TRUE, gamma=gam)
      logLik(update(object, y1 ~ ., data=data))}
    f <- optimize(f=fn7, interval=c(.5*gamma.min, max(y)), maximum=TRUE)
    list(lambda=lambda, gamma=f$maximum, llik=f$objective)
  }
  # starting values for lambda, gamma
  lambda <- gamma <- 1
  gamma.ok <- TRUE
  res <- lambda.1d(lambda, gamma)
  res <- gamma.1d(res$lambda, res$gamma)
  if(res$gamma < 1.5 * gamma.min){
    gamma.ok <- FALSE
    res <- lambda.1d(res$lambda, gamma.min)
  } else{
  # iteration is needed only if gamma is not on the boundary
  # set iteration counter
    i <- 0
    crit <- 1
    while( (crit > conv) & (i < itmax) & gamma.ok) {
      i <- i+1
      last.value <- res
      res <- lambda.1d(res$lambda, res$gamma)
      res <- gamma.1d(res$lambda, res$gamma)
      if(res$gamma < 1.5 * gamma.min){
        gamma.ok <- FALSE
        res <- lambda.1d(res$lambda, gamma.min)
      }
      crit <- (res$llik - last.value$llik)/abs(res$llik)
      if(verbose)
      print(data.frame(Iter=i, gamma=res$gamma, lambda=res$lambda,
                       llik=res$llik, crit=crit))
    }
    if(i==itmax & conv > crit)
      warning(paste("No convergence in", itmax, "iterations, criterion =",
                  crit, collapse=" "))
  }
#  if(!gamma.ok) warning(paste("gamma too close to zero, set to",gamma.min, collapse=" "))
  # optimize does not give the Hessian, so run optimHess
  if(gamma.ok){
    llikfn <- function(par){
       data$y1 <- bcnPower(y, par[1], jacobian.adjusted=TRUE, par[2])
       mf <- update(object, y1 ~ ., data=data)
       logLik(mf)
    }
    res$invHess <- solve(-optimHess(unlist(res[1:2]), llikfn))
    if(any(diag(res$invHess) < 0)) res$invHess <- matrix(NA, nrow=2, ncol=2)
    } else
    {
    llikfn1 <- function(lam){
       data$y1 <- bcnPower(y, lambda=lam, jacobian.adjusted=TRUE, gamma=res$gamma)
       logLik(update(object, y1 ~ ., data=data))}
    v1 <- -1/optimHess(res$lambda, llikfn1)
    res$invHess <- matrix(c(v1, NA, NA, NA), ncol=2)
    }
  roundlam <- res$lambda
  stderr <- sqrt(res$invHess[1,1])
  lamL <- roundlam - 1.96 * stderr
  lamU <- roundlam + 1.96 * stderr
  for (val in rev(c(1, 0, -1, .5, .33, -.5, -.33, 2, -2))) {
    sel <- lamL <= val & val <= lamU
    roundlam[sel] <- val
  }
  res$model <- object
  res$roundlam <- roundlam
  res$family<-family
  res$gamma.estimated <- gamma.ok
  class(res) <- c("bcnPowerTransformlmer", "bcnPowerTransform")
  res
}

testTransform.bcnPowerTransformlmer <- function(object, lambda=1){
  nc <- 1
  lam <- lambda
  mod <- object$model
  data <- model.frame(mod)
  data$.y <- mod@resp$y
  gamma.1d <- function(mod, lambda=lambda, gamma=gamma){
    fn <- function(gam){
      data$.y1 <- bcnPower(data$.y, lambda, jacobian.adjusted=TRUE, gamma=gam)
      logLik(update(mod, .y1 ~ ., data=data))}
    f <- optimize(f=fn, interval=c(1.e-5, max(data$.y)), maximum=TRUE)
    list(lambda=lambda, gamma=f$maximum, llik=f$objective)
  }
  val <- gamma.1d(object$model, lambda, object$gamma)$llik
  LR <- max(0, -2 * (val - object$llik))
  df <- nc
  pval <- 1-pchisq(LR, df)
  out <- data.frame(LRT=LR, df=df, pval=pval)
  rownames(out) <-
    c(paste("LR test, lambda = (",
            paste(round(lam, 2), collapse=" "), ")", sep=""))
  out}

summary.bcnPowerTransformlmer<-function(object,...){
  nc <- length(object$lambda)
  label <- "bcn - Box-Cox Power transformation to Normality\nallowing for negative values, lmer fit\n"
  lambda <- object$lambda
  gamma <- object$gamma
  stderr <- sqrt(diag(object$invHess))
  stderr.gamma <- stderr[(nc+1):(2*nc)]
  stderr <- stderr[1:nc]
  result <- cbind(lambda, stderr, lambda - 1.96*stderr, lambda + 1.96*stderr)
  result.gamma <- cbind(gamma, stderr.gamma, pmax(gamma - 1.96*stderr.gamma, 0), gamma + 1.96*stderr.gamma)
  rownames(result) <- rownames(result.gamma) <- object$ylabs
  colnames(result) <- colnames(result.gamma) <-
    c("Est.Power", "Std.Err.", "Wald Lower Bound", "Wald Upper Bound")
  colnames(result.gamma) <-
    c("Est.gamma", "Std.Err.", "Wald Lower Bound", "Wald Upper Bound")
  tests <- testTransform(object, 0)
  tests <- rbind(tests, testTransform(object, 1))
  if ( !(all(object$roundlam==0) | all(object$roundlam==1) |
         length(object$roundlam)==1 ))
    tests <- rbind(tests, testTransform(object, object$roundlam))
  out <-  list(label=label, result=result, result.gamma=result.gamma,
               gamma.estimated=object$gamma.estimated,tests=tests)
  class(out) <- "summary.bcnPowerTransform"
  out
}