1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
# 05-02-2017: bcnPower family, replacing skewPower. S. Weisberg
# 2017-05-18: Changed summary.powerTransform; deleted invalid test; added roundlam to output
# 2017-12-19: Deleted plot method
# 2017-12-19: Improved handling of gamma small case, still not great for the
# multivariate extenstion. Works for lm and lmer
# 2017-12-25: bug fix with multivariace bcnPower
# 2019-03-07: bug fix in estimateTransform.bcnPowerlmer, thanks to wouter@zoology.ubc.ca
# 2019-11-14,15: change class(x) == "y" to inherits(x, "y") and likewise for !=
bcnPower <- function(U, lambda, jacobian.adjusted=FALSE, gamma) {
if(is.matrix(U)){
if(dim(U)[2] != length(lambda) | dim(U)[2] != length(gamma))
stop("gamma and lambda must have length equal to number of columns in U")
} else {
if(length(gamma) != 1 | length(lambda) != 1)
stop("gamma and lambda must be length 1")
}
if(any(gamma < 0)) stop("gamma must be >= 0")
hc1 <- function(U, lambda, gamma){
if(abs(gamma) <= 1.e-10 & any(U[!is.na(U)] <= 0))
stop("First argument must be strictly positive if gamma = 0.")
s <- sqrt(U^2 + gamma^2)
z <- if (abs(lambda) <= 1.e-10)
log(.5*(U + s)) else ((.5*(U + s))^lambda - 1)/lambda
if (jacobian.adjusted == TRUE) {
Jn <- (.5^lambda) *
(exp((lambda - 1) * mean(log(U + s), na.rm=TRUE))) *
(exp(mean(log(1 + U/s), na.rm=TRUE)))
z <- z/Jn}
z
}
out <- U
out <- if(is.matrix(out) | is.data.frame(out)){
if(is.null(colnames(out)))
colnames(out) <- paste("Z", 1:dim(out)[2], sep="")
for (j in 1:ncol(out)) {out[, j] <- hc1(out[, j], lambda[j], gamma[j]) }
colnames(out) <- paste(colnames(out), "(",
round(lambda, 2), ",",round(gamma, 1),")", sep="")
# colnames(out) <- paste(colnames(out), round(lambda, 2), sep="^")
out} else
hc1(out, lambda, gamma)
out}
bcnPowerInverse <- function(z, lambda, gamma){
q <- if(abs(lambda) < 1.e-7) 2 * exp(z) else 2 * (lambda*z + 1)^(1/lambda)
(q^2 - gamma^2)/(2 * q)
}
###############################################################################
# estimateTransform and methods
#
# multivariate box-cox with negatives starting values, given X and Y
bcn.sv <- function(X, Y, weights, itmax=100, conv=.0001, verbose=FALSE,
start=TRUE, gamma.min=.1){
Y <- as.matrix(Y)
d <- dim(Y)[2]
if(d > 1) stop("bcn.sv requires a univariate response")
lambda.1d <- function(Y, weights, lambda, gamma, xqr){
fn <- function(lam) bcnPowerllik(NULL, Y, weights, lambda=lam,
gamma=gamma, xqr=xqr)$llik
f <- optimize(f=fn, interval=c(-3, 3), maximum=TRUE)
list(lambda=f$maximum, gamma=gamma, llik=f$objective)
}
gamma.1d <- function(Y, weights, lambda, gamma, xqr){
fn1 <- function(gam) bcnPowerllik(NULL, Y, weights, lambda=lambda,
gamma=gam, xqr=xqr)$llik
f <- optimize(f=fn1, interval=c(0.01, max(Y)), maximum=TRUE)
list(lambda=lambda, gamma=f$maximum, llik=f$objective)
}
# get qr decomposition
w <- if(is.null(weights)) 1 else sqrt(weights)
xqr <- qr(w * as.matrix(X))
# get starting value for gamma
gamma <- if(min(Y) <= 0) max(min(Y[Y>0]), 5*gamma.min) else 0
res <- lambda.1d(Y, weights, lambda=1, gamma=gamma, xqr)
res <- gamma.1d(Y, weights, lambda=res$lambda, gamma=res$gamma, xqr)
# set iteration counter
i <- 0
crit <- 1
gamma.ok <- TRUE
while( (crit > conv) & (i < itmax) & gamma.ok) {
i <- i+1
last.value <- res
res <- lambda.1d(Y, weights, res$lambda, res$gamma, xqr)
res <- gamma.1d(Y, weights, res$lambda, res$gamma, xqr)
if(res$gamma < 1.5 * gamma.min){
gamma.ok <- FALSE
res <- lambda.1d(Y, weights, res$lambda, gamma.min, xqr)
}
crit <- (res$llik - last.value$llik)/abs(res$llik)
if(verbose)
print(data.frame(Iter=i, gamma=res$gamma,
lambda=res$gamma, llik=res$llik, crit=crit))
}
if(i==itmax & conv > crit)
warning(paste("No convergence in", itmax, "iterations, criterion =", crit, collapse=" "))
# if(!gamma.ok) warning(paste("gamma too close to zero, set to", gamma.min, collapse=" "))
if(start == TRUE) return(c(res, gamma.estimated=gamma.ok)) else {
# compute the Hessian -- depends on gamma.ok
if(gamma.ok){
fn2 <- function(param){
lam <- param[1]
gam <- param[2]
bcnPowerllik(NULL, Y, weights, lam, gam, xqr=xqr)$llik
}
hess <- optimHess(c(res$lambda, res$gamma), fn2)
res$invHess <- solve(-hess)} else{
# gamma.ok == FALSE
fn3 <- function(lam){
lam
bcnPowerllik(NULL, Y, weights, lam, gamma.min, xqr=xqr)$llik
}
hess <- optimHess(res$lambda, fn3)
res$invHess <- matrix(c(-1/hess, NA, NA, NA), ncol=2)}
# end computing of invHess
rownames(res$invHess) <- colnames(res$invHess) <- c("lambda", "gamma")
roundlam <- res$lambda
stderr <- sqrt(diag(res$invHess[1, 1, drop=FALSE]))
stderr.gam <- sqrt(diag(res$invHess[2, 2, drop=FALSE]))
lamL <- roundlam - 1.96 * stderr
lamU <- roundlam + 1.96 * stderr
for (val in rev(c(1, 0, -1, .5, .33, -.5, -.33, 2, -2))) {
sel <- lamL <= val & val <= lamU
roundlam[sel] <- val
}
res$roundlam <- roundlam
res$ylabs <-
if (is.null(colnames(Y))) paste("Y", 1:dim(as.matrix(Y))[2], sep="") else colnames(Y)
res$xqr <- xqr
res$y <- as.matrix(Y)
res$x <- as.matrix(X)
res$weights <- weights
res$family <- "bcnPowerTransform"
res$y
res$gamma.estimated <- gamma.ok
class(res) <- c("bcnPowerTransform", "powerTransform")
res}
}
estimateTransform.bcnPower <- function(X, Y, weights,
itmax=100, conv=.0001, verbose=FALSE, gamma.min=.1){
d <- dim(as.matrix(Y))[2]
skf.lambda <- function(Y, weights, lambda, gamma, xqr){
fn3a <- function(lam) bcnPowerllik(NULL, Y, weights, lambda=lam,
gamma=gamma, xqr=xqr)$llik
f <- optim(par=lambda, fn=fn3a, method="L-BFGS-B",
lower=rep(-3, d), upper=rep(3, d),
control=list(fnscale=-1))
list(lambda=f$par, gamma=gamma, llik=f$value, conv=f$convergence, message=f$message)
}
skf.gamma <- function(Y, weights, lambda, gamma, xqr){
fn3b <- function(gam) bcnPowerllik(NULL, Y, weights, lambda=lambda,
gamma=gam, xqr=xqr)$llik
f <- optim(par=gamma, fn=fn3b, method="L-BFGS-B",
lower=rep(gamma.min, d),
upper=rep(Inf, d),
control=list(fnscale=-1))
list(lambda=lambda, gamma=f$par, llik=f$value,
conv=f$convergence, message=f$message)
}
# get qr decomposition once
w <- if(is.null(weights)) 1 else sqrt(weights)
xqr <- qr(w * as.matrix(X))
# if d = 1 call bcn.sv and return, else call bcn.sv to get starting values.
if(d == 1) bcn.sv(X, Y, weights, start=FALSE) else{
# The rest of this code is for the multivariate case
# get starting values for gamma
sv <- apply(Y, 2, function(y) unlist(bcn.sv(X, y, weights, start=TRUE)))
res <- as.list(as.data.frame(t(sv))) # output to a list
# gamma.estimated converted to numeric, so fixup
res$gamma.estimated <- ifelse(res$gamma.estimated==1, TRUE, FALSE)
res$llik <- -Inf
# set iteration counter
i <- 0
crit <- 1
# iterate
while( (crit > conv) & (i < itmax)) {
i <- i+1
last.value <- res
res <- skf.gamma (Y, weights, res$lambda, res$gamma, xqr)
res <- skf.lambda(Y, weights, res$lambda, res$gamma, xqr)
crit <- (res$llik - last.value$llik)/abs(res$llik)
if(verbose)
print(paste("Iter:", i, "llik=", res$llik, "Crit:", crit, collapse=" "))
}
if(itmax == 1) warning("One iteration only, results assume responses are uncorrelated")
# if(i==itmax & conv > crit)
# warning(paste("No convergence in", itmax, "iterations, criterion =", crit, collapse=" "))
fn4 <- function(param){
lam <- param[1:d]
gam <- param[(d+1):(2*d)]
bcnPowerllik(NULL, Y, weights, lam, gam, xqr=xqr)$llik
}
# check gamma
gamma.ok <- ifelse(res$gamma > 1.5*gamma.min, TRUE, FALSE)
res$gamma[!gamma.ok] <- gamma.min
if(all(gamma.ok)){
hess <- try(optimHess(c(res$lambda, res$gamma), fn4))
res$invHess <- if(inherits(hess, "try-error")) NA else solve(-hess)
} else {
fn4a <- function(lam) fn4(c(lam, res$gamma))
hess <- try(optimHess(res$lambda, fn4a)) # hessian for lambda only
res$invHess <- matrix(NA, nrow=2*d, ncol=2*d)
res$invHess[1:d, 1:d] <- solve(-hess)
}
roundlam <- res$lambda
stderr <- sqrt(diag(res$invHess[1:d, 1:d, drop=FALSE]))
stderr.gam <- sqrt(diag(res$invHess[(d+1):(2*d), (d+1):(2*d), drop=FALSE]))
lamL <- roundlam - 1.96 * stderr
lamU <- roundlam + 1.96 * stderr
for (val in rev(c(1, 0, -1, .5, .33, -.5, -.33, 2, -2))) {
sel <- lamL <= val & val <= lamU
roundlam[sel] <- val
}
res$roundlam <- roundlam
res$ylabs <-
if (is.null(colnames(Y))) paste("Y", 1:d, sep="") else colnames(Y)
invHesslabels <- c(paste(res$ylabs, "lambda", sep=":"),
paste(res$ylabs, "gamma", sep=":"))
if (!inherits(hess, "try-error"))
rownames(res$invHess) <- colnames(res$invHess) <- invHesslabels
res$xqr <- xqr
res$y <- as.matrix(Y)
res$x <- as.matrix(X)
res$weights <- weights
res$family <- "bcnPowerTransform"
res$y
class(res) <- c("bcnPowerTransform", "powerTransform")
res$gamma.estimated <- gamma.ok
res
}}
#############################################################################
## The log-likelihood function assuming a normal target
## Evaluate bcnPower llik at (lambda, gamma)-----------------------------------
bcnPowerllik <- function(X, Y, weights=NULL, lambda, gamma, xqr=NULL) {
Y <- as.matrix(Y) # coerces Y to be a matrix.
w <- if(is.null(weights)) 1 else sqrt(weights)
xqr <- if(is.null(xqr)){qr(w * as.matrix(X))} else xqr
nr <- nrow(Y)
f <- -(nr/2)*log(((nr - 1)/nr) *
det(as.matrix(var(qr.resid(xqr, w * bcnPower(Y, lambda,
jacobian.adjusted=TRUE, gamma=gamma))))))
list(lambda=lambda, gamma=gamma, llik=f)
}
###############################################################################
# testTransform
testTransform.bcnPowerTransform <- function(object, lambda=rep(1, dim(object$y)[2])){
d <- length(object$lambda)
lam <- if(length(lambda)==1) rep(lambda, d) else lambda
skf.gamma <- function(Y, weights, lambda, gamma, xqr){
fn5 <- function(gam) bcnPowerllik(NULL, Y, weights, lambda=lam,
gamma=gamma, xqr=xqr)$llik
f <- optim(par=gamma, fn=fn5, method="L-BFGS-B",
lower=rep(.Machine$double.eps^0.25, d),
upper=rep(Inf, d),
control=list(fnscale=-1))
list(lambda=lambda, gamma=f$par, llik=f$value, conv=f$convergence,
message=f$message)
}
val <- skf.gamma(object$y, object$weights, lam,
gamma=object$gamma, xqr=object$xqr)$llik
LR <- max(0, -2 * (val - object$llik))
df <- d
pval <- 1-pchisq(LR, df)
out <- data.frame(LRT=LR, df=df, pval=pval)
rownames(out) <-
c(paste("LR test, lambda = (",
paste(round(lam, 2), collapse=" "), ")", sep=""))
out}
print.bcnPowerTransform<-function(x, ...) {
cat("Estimated transformation power, lambda\n")
print(x$lambda)
# temporary code
if(is.null(x$gamma.estimated)) x$gamma.estimated=TRUE
if(any(x$gamma.estimated)){
cat("\nEstimated location, gamma\n")} else{
cat("\nLocation gamma was fixed at its lower bound\n")}
print(x$gamma)
invisible(x)}
summary.bcnPowerTransform <- function(object, ...){
nc <- length(object$lambda)
label <- paste(if(nc==1) "bcnPower transformation to Normality" else
"bcnPower transformation to Multinormality", "\n")
lambda <- object$lambda
roundlam <- round(object$roundlam, 3)
gamma <- object$gamma
stderr <- sqrt(diag(object$invHess))
stderr.gamma <- stderr[(nc+1):(2*nc)]
stderr <- stderr[1:nc]
result <- cbind(lambda, roundlam, lambda - 1.96*stderr, lambda + 1.96*stderr)
result.gamma <- cbind(gamma, stderr.gamma, pmax(gamma - 1.96*stderr.gamma, 0), gamma + 1.96*stderr.gamma)
rownames(result) <- rownames(result.gamma) <- object$ylabs
colnames(result) <- c("Est Power", "Rounded Pwr", "Wald Lwr Bnd", "Wald Upr Bnd")
colnames(result.gamma) <-
c("Est gamma", "Std Err.", "Wald Lower Bound", "Wald Upper Bound")
tests <- testTransform(object, 0)
tests <- rbind(tests, testTransform(object, 1))
# if ( !(all(object$roundlam==0) | all(object$roundlam==1) |
# length(object$roundlam)==1 | all(object$roundlam == object$lambda)))
# tests <- rbind(tests, testTransform(object, object$roundlam))
out <- list(label=label, result=result, result.gamma=result.gamma,
tests=tests, gamma.estimated=object$gamma.estimated)
if(is.null(out$gamma.estimated)) out$gamma.estimated <- TRUE
class(out) <- "summary.bcnPowerTransform"
out
}
print.summary.bcnPowerTransform <- function(x,digits=4, ...) {
cat(x$label)
cat("\nEstimated power, lambda\n")
print(round(x$result, digits))
if(any(x$gamma.estimated)){
cat("\nEstimated location, gamma\n")} else{
cat("\nLocation gamma was fixed at its lower bound\n")}
print(round(x$result.gamma, digits))
cat("\nLikelihood ratio tests about transformation parameters\n")
print(x$tests)
if(any(x$result.gamma[,1] < 1.e-5)) warning(
"When gamma is zero, transformation family is the Box-Cox Power family")
}
coef.bcnPowerTransform <- function(object, param=c("both", "lambda", "gamma"), round=FALSE, ...){
param <- match.arg(param)
co <- cbind(if(round==TRUE) object$roundlam else object$lambda, object$gamma)
dimnames(co) <- list(object$ylabs, c("lambda", "gamma"))
switch(param, lambda = co[, 1], gamma=co[, 2], both= co)
}
vcov.bcnPowerTransform <- function(object, param=c("both", "lambda", "gamma"), ...) {
param <- match.arg(param)
nc <- length(object$lambda)
switch(param, lambda=object$invHess[1:nc, 1:nc], gamma=object$invHess[(nc+1):(2*nc), (nc+1):(2*nc)],
both=object$invHess)
}
##########################################################################################
# bcnPower for lmer models
# Modified 12/19/2017 to handle gamma-at-the boundary gracefully
estimateTransform.bcnPowerlmer <- function(object, verbose=FALSE,
conv=.001, itmax=100, gamma.min=.1, ...) {
data <- model.frame(object)
y <- (object@resp)$y
lambda.1d <- function(lambda, gamma){
fn6 <- function(lam){
data$y1 <- bcnPower(y, lambda=lam, jacobian.adjusted=TRUE, gamma)
logLik(update(object, y1 ~ ., data=data))}
f <- optimize(f=fn6, interval=c(-3, 3), maximum=TRUE)
list(lambda=f$maximum, gamma=gamma, llik=f$objective)
}
gamma.1d <- function(lambda=lambda, gamma=gamma){
fn7 <- function(gam){
data$y1 <- bcnPower(y, lambda, jacobian.adjusted=TRUE, gamma=gam)
logLik(update(object, y1 ~ ., data=data))}
f <- optimize(f=fn7, interval=c(.5*gamma.min, max(y)), maximum=TRUE)
list(lambda=lambda, gamma=f$maximum, llik=f$objective)
}
# starting values for lambda, gamma
lambda <- gamma <- 1
gamma.ok <- TRUE
res <- lambda.1d(lambda, gamma)
res <- gamma.1d(res$lambda, res$gamma)
if(res$gamma < 1.5 * gamma.min){
gamma.ok <- FALSE
res <- lambda.1d(res$lambda, gamma.min)
} else{
# iteration is needed only if gamma is not on the boundary
# set iteration counter
i <- 0
crit <- 1
while( (crit > conv) & (i < itmax) & gamma.ok) {
i <- i+1
last.value <- res
res <- lambda.1d(res$lambda, res$gamma)
res <- gamma.1d(res$lambda, res$gamma)
if(res$gamma < 1.5 * gamma.min){
gamma.ok <- FALSE
res <- lambda.1d(res$lambda, gamma.min)
}
crit <- (res$llik - last.value$llik)/abs(res$llik)
if(verbose)
print(data.frame(Iter=i, gamma=res$gamma, lambda=res$lambda,
llik=res$llik, crit=crit))
}
if(i==itmax & conv > crit)
warning(paste("No convergence in", itmax, "iterations, criterion =",
crit, collapse=" "))
}
# if(!gamma.ok) warning(paste("gamma too close to zero, set to",gamma.min, collapse=" "))
# optimize does not give the Hessian, so run optimHess
if(gamma.ok){
llikfn <- function(par){
data$y1 <- bcnPower(y, par[1], jacobian.adjusted=TRUE, par[2])
mf <- update(object, y1 ~ ., data=data)
logLik(mf)
}
res$invHess <- solve(-optimHess(unlist(res[1:2]), llikfn))
if(any(diag(res$invHess) < 0)) res$invHess <- matrix(NA, nrow=2, ncol=2)
} else
{
llikfn1 <- function(lam){
data$y1 <- bcnPower(y, lambda=lam, jacobian.adjusted=TRUE, gamma=res$gamma)
logLik(update(object, y1 ~ ., data=data))}
v1 <- -1/optimHess(res$lambda, llikfn1)
res$invHess <- matrix(c(v1, NA, NA, NA), ncol=2)
}
roundlam <- res$lambda
stderr <- sqrt(res$invHess[1,1])
lamL <- roundlam - 1.96 * stderr
lamU <- roundlam + 1.96 * stderr
for (val in rev(c(1, 0, -1, .5, .33, -.5, -.33, 2, -2))) {
sel <- lamL <= val & val <= lamU
roundlam[sel] <- val
}
res$model <- object
res$roundlam <- roundlam
res$family<-family
res$gamma.estimated <- gamma.ok
class(res) <- c("bcnPowerTransformlmer", "bcnPowerTransform")
res
}
testTransform.bcnPowerTransformlmer <- function(object, lambda=1){
nc <- 1
lam <- lambda
mod <- object$model
data <- model.frame(mod)
data$.y <- mod@resp$y
gamma.1d <- function(mod, lambda=lambda, gamma=gamma){
fn <- function(gam){
data$.y1 <- bcnPower(data$.y, lambda, jacobian.adjusted=TRUE, gamma=gam)
logLik(update(mod, .y1 ~ ., data=data))}
f <- optimize(f=fn, interval=c(1.e-5, max(data$.y)), maximum=TRUE)
list(lambda=lambda, gamma=f$maximum, llik=f$objective)
}
val <- gamma.1d(object$model, lambda, object$gamma)$llik
LR <- max(0, -2 * (val - object$llik))
df <- nc
pval <- 1-pchisq(LR, df)
out <- data.frame(LRT=LR, df=df, pval=pval)
rownames(out) <-
c(paste("LR test, lambda = (",
paste(round(lam, 2), collapse=" "), ")", sep=""))
out}
summary.bcnPowerTransformlmer<-function(object,...){
nc <- length(object$lambda)
label <- "bcn - Box-Cox Power transformation to Normality\nallowing for negative values, lmer fit\n"
lambda <- object$lambda
gamma <- object$gamma
stderr <- sqrt(diag(object$invHess))
stderr.gamma <- stderr[(nc+1):(2*nc)]
stderr <- stderr[1:nc]
result <- cbind(lambda, stderr, lambda - 1.96*stderr, lambda + 1.96*stderr)
result.gamma <- cbind(gamma, stderr.gamma, pmax(gamma - 1.96*stderr.gamma, 0), gamma + 1.96*stderr.gamma)
rownames(result) <- rownames(result.gamma) <- object$ylabs
colnames(result) <- colnames(result.gamma) <-
c("Est.Power", "Std.Err.", "Wald Lower Bound", "Wald Upper Bound")
colnames(result.gamma) <-
c("Est.gamma", "Std.Err.", "Wald Lower Bound", "Wald Upper Bound")
tests <- testTransform(object, 0)
tests <- rbind(tests, testTransform(object, 1))
if ( !(all(object$roundlam==0) | all(object$roundlam==1) |
length(object$roundlam)==1 ))
tests <- rbind(tests, testTransform(object, object$roundlam))
out <- list(label=label, result=result, result.gamma=result.gamma,
gamma.estimated=object$gamma.estimated,tests=tests)
class(out) <- "summary.bcnPowerTransform"
out
}
|