1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
#############################################
# marginal model plots Rev 12/30/09
# 15 March 2010 changed to make
# mmps(lm(longley)) work without specifying data or response
# fixed bug when only one plot is requested --- suppress call to par()
# added 'outerLegend' to label lines
# modified to work correctly with
# 28 May 2010 S. Weisberg, fixed bugs in logistic models
# changed line thickness of mean smooths
# excluded SD smooth from bernoulli models
# added grid lines
# 15 August 2010 fixed colors of points to work properly
# 16 January 2011 improved handling of splines and polynomials in mmps to
# allow plots against base variables (e.g., bs(x, 3) could be
# replaced by just x in the 'terms' argument to mmps.
# 16 June 2011 allow layout=NA, in which case the layout is not set in this
# function, so it is the responsibility of the user
# 14 September 2012 improved the smoothers
# 22 September 2012 added conditioning on one categorical regressor
# 2017-02-13: consolidated smooth and id arguments. J. Fox
# 2017-10-29: Changed line type of smooth of the data to 1 as advertised
# 2017-10-29: Changed default color palette from palette() to carPalette()
# 2019-05-17: in mmp.glm, default horizontal variable when fitted=TRUE is now the
# fitted values for lm and the linear predictor for glm
# 2019-05-17: added ylab arg to mmp() methods. J. Fox
# 2019-11-14: change class(x) == "y" to inherits(x, "y")
#############################################
marginalModelPlot <- function(...){
mmp(...)
}
mmp <- function(model, ...){
UseMethod("mmp")
}
mmp.lm <- function (model, variable, sd = FALSE,
xlab = deparse(substitute(variable)),
smooth=TRUE, key=TRUE, pch, groups=NULL, ...){
smooth <- applyDefaults(smooth, defaults=list(smoother=loessLine, span=2/3), type="smooth")
mmp.default(model, variable, sd, xlab, smooth=smooth, key, pch=pch, groups=groups, ...)
}
mmp.default <- function (model, variable, sd = FALSE,
xlab = deparse(substitute(variable)), ylab, smooth=TRUE, key=TRUE, pch, groups=NULL,
col.line = carPalette()[c(2, 8)], col=carPalette()[1],
id=FALSE, grid=TRUE, ...){
id <- applyDefaults(id, defaults=list(method="y", n=2, cex=1, col=carPalette()[1], location="lr"), type="id")
if (isFALSE(id)){
id.n <- 0
id.method <- "none"
labels <- id.cex <- id.col <- id.location <- NULL
}
else{
labels <- id$labels
if (is.null(labels)) labels <- names((residuals(model)))
id.method <- id$method
id.n <- if ("identify" %in% id.method) Inf else id$n
id.cex <- id$cex
id.col <- id$col
id.location <- id$location
}
smoother.args <- applyDefaults(smooth, defaults=list(smoother=loessLine, span=2/3), type="smooth")
if (!isFALSE(smoother.args)) {
smoother <- smoother.args$smoother
smoother.args$smoother <- NULL
}
else smoother <- "none"
lwd <- match.call(expand.dots=TRUE)$lwd
if(missing(pch)) pch <- 1
groups.col <- col
if (!is.null(groups)){
if(is.data.frame(groups)) {
groups.label <- colnames(groups)[1]
groups <- groups[,1]
} else {
groups.label <- deparse(substitute(groups))
}
groups.levels <- unique(na.omit(groups))
for (j in 1:(length(groups.levels))) {
pch[groups==groups.levels[j]] <- j
groups.col[groups==groups.levels[j]] <- carPalette()[j]}
}
if (!is.null(attr(model$model, "na.action"))) {
if (attr(attr(model$model, "na.action"), "class") == "exclude")
model <- update(model, na.action=na.omit)}
if (missing(variable)) {
xlab <- "Fitted values"
u <- fitted(model)
} else {
u <- variable}
resp <- model.response(model.frame(model))
if (missing(ylab)) ylab <- colnames(model$model[1])
plot(u, resp,
xlab = xlab, ylab = ylab, type="n", ...)
if(grid){
grid(lty=1, equilogs=FALSE)
box()}
points(u, model$model[ , 1], col=groups.col, pch=pch, ...)
if (!(is.character(smoother) && smoother == "none")){
ow <- options(warn=-1)
on.exit(options(ow))
smoother.args$lty.spread <- 1
smoother.args$lwd <- smoother.args$lwd.spread <- if(is.null(lwd)) 2 else lwd
if(is.null(groups)) {
smoother.args$lty.smooth <- 1
smoother(u, resp, col.line[1], log.x=FALSE, log.y=FALSE, spread=sd,
smoother.args=smoother.args)
smoother.args$lty.smooth <- smoother.args$lty.spread <- 2
# 11/21/14: SD smooth under the model corrected by adding the 'offset'
smoother(u, predict(model), col.line[2], log.x=FALSE, log.y=FALSE, spread=sd,
smoother.args=smoother.args, offset=sigmaHat(model))
# smoother.args=smoother.args)
if(key){
outerLegend(c("Data", "Model"), lty=1:2, col=col.line,
bty="n", cex=0.75, fill=col.line, border=col.line, horiz=TRUE,
offset=0)
}
} else {
for (j in 1:length(groups.levels)) {
smoother.args$lwd <- if(is.null(lwd)) 1.75 else lwd
smoother.args$lty.smooth <- 1
sel <- groups == groups.levels[j]
smoother(u[sel], resp[sel], carPalette()[j], log.x=FALSE, log.y=FALSE, spread=FALSE,
smoother.args=smoother.args)
smoother.args$lty.smooth <- 2
smoother(u[sel], predict(model)[sel], carPalette()[j], log.x=FALSE, log.y=FALSE, spread=FALSE,
smoother.args=smoother.args)
}
items <- paste(groups.label, groups.levels, sep= " = ")
col.items <- carPalette()[1:length(groups.levels)]
lty.items <- 1
if(key) plotArrayLegend(location="top",
items=items, col.items=col.items,
lty.items=lty.items , lwd.items=2, title="Legend")
}
}
showLabels(u, resp, labels=labels,
method=id.method, n=id.n, cex=id.cex,
col=id.col, location=id.location)
}
mmp.glm <- function (model, variable, sd = FALSE,
xlab = deparse(substitute(variable)), ylab,
smooth=TRUE, key=TRUE, pch, groups=NULL,
col.line = carPalette()[c(2, 8)], col=carPalette()[1],
id=FALSE, grid=TRUE, ...){
id <- applyDefaults(id, defaults=list(method="y", n=2, cex=1, col=carPalette()[1], location="lr"), type="id")
if (isFALSE(id)){
id.n <- 0
id.method <- "none"
labels <- id.cex <- id.col <- id.location <- NULL
}
else{
labels <- id$labels
if (is.null(labels)) labels <- names((residuals(model)))
id.method <- id$method
id.n <- if ("identify" %in% id.method) Inf else id$n
id.cex <- id$cex
id.col <- id$col
id.location <- id$location
}
smoother.args <- applyDefaults(smooth, defaults=list(smoother=gamLine, k=3), type="smooth")
if (!isFALSE(smoother.args)) {
smoother <- smoother.args$smoother
smoother.args$smoother <- NULL
}
else smoother <- "none"
lwd <- match.call(expand.dots=TRUE)$lwd
if(missing(pch)) pch <- 1
groups.col <- col
groups.pch <- match.call(expand.dots=TRUE)$pch
if(is.null(groups.pch)) groups.pch <- 1
if (!is.null(groups)){
if(is.data.frame(groups)) {
groups.label <- colnames(groups)[1]
groups <- groups[,1]
} else {
groups.label <- deparse(substitute(groups))
}
groups.levels <- unique(na.omit(groups))
for (j in 1:(length(groups.levels))) {
pch[groups==groups.levels[j]] <- j
groups.col[groups==groups.levels[j]] <- carPalette()[j]}
}
if (missing(variable)) {
xlab <- "Linear Predictor"
u <- predict(update(model, na.action=na.omit), type="link")
# u <- fitted(update(model, na.action=na.omit)) #deleted 5/17/2019
} else {
u <- variable }
response <- model.response(model.frame(model))
fam <- model$family$family
lin <- model$family$link
pw <- model$prior.weights # relevant only for binomial
bernoulli <- FALSE
if(fam == "binomial") {
if(!any(pw > 1.1)) bernoulli <- TRUE
if (is.factor(response)) {response <- as.numeric(response) - 1}
if (is.matrix(response)){response <- response[, 1]/pw}
}
if (missing(ylab)) ylab <- colnames(model$model[1])
plot(u, response, type="n", xlab = xlab, ylab = ylab)
if(grid){
grid(lty=1, equilogs=FALSE)
box()}
points(u, response, col=col, pch=pch, ...)
if (!(is.character(smoother) && smoother == "none")){
ow <- options(warn=-1)
on.exit(options(ow))
smoother.args$lty.smooth <- 1
smoother.args$family <- fam
smoother.args$link <- lin
smoother.args$weights <- pw
model.fit <- if(fam=="binomial") predict(model, type="response")/pw
else predict(model, type="response")
if(is.null(groups)) {
smoother(u, response, col.line[1], log.x=FALSE, log.y=FALSE, spread=FALSE,
smoother.args=smoother.args)
smoother.args$lty.smooth <- 2
smoother(u, model.fit, col.line[2], log.x=FALSE, log.y=FALSE, spread=FALSE,
smoother.args=smoother.args)
if(key){ outerLegend(c("Data", "Model"), lty=1:2, col=col.line,
bty="n", cex=0.75, fill=col.line, border=col.line,
horiz=TRUE, offset=0)
}
} else {
for (j in 1:length(groups.levels)) {
smoother.args$lwd <- if(is.null(lwd)) 1.75 else lwd
smoother.args$lty.smooth <- 1
sel <- groups == groups.levels[j]
smoother(u[sel], response[sel], carPalette()[j], log.x=FALSE, log.y=FALSE,
spread=FALSE, smoother.args=smoother.args)
smoother.args$lty.smooth <- 2
smoother(u[sel], model.fit[sel], carPalette()[j], log.x=FALSE, log.y=FALSE,
spread=FALSE, smoother.args=smoother.args)
}
items <- paste(groups.label, groups.levels, sep= " = ")
col.items <- carPalette()[1:length(groups.levels)]
lty.items <- 1
if(key) plotArrayLegend(location="top",
items=items, col.items=col.items,
lty.items=lty.items , lwd.items=2, title="Legend")
}
}
showLabels(u, as.numeric(model$model[, 1]), labels=labels,
method=id.method, n=id.n, cex=id.cex,
col=id.col, location=id.location)
}
marginalModelPlots <- function(...) mmps(...)
mmps <- function(model, terms= ~ ., fitted=TRUE, layout=NULL, ask,
main, groups, key=TRUE, ...){
mf <- if(!is.null(terms)) termsToMf(model, terms) else NULL
labels2 <- attr(attr(mf$mf.vars, "terms"), "term.labels")
order2 <- attr(attr(mf$mf.vars, "terms"), "order")
type2 <- rep("good", length(labels2))
if(length(labels2) > 0) {
for (j in 1:length(labels2)){
if(order2[j] > 1) type2[j] <- NA #exclude interatctions
if(inherits(mf$mf.vars[[labels2[j]]], "factor")) type2[j] <- NA #no factors
if(inherits(mf$mf.vars[[labels2[j]]], "matrix")) type2[j] <- "original"
}
if (any( type2=="original", na.rm=TRUE )){
p1 <- try(predict(model, type="terms"), silent=TRUE)
if(inherits(p1, "try-error")) {type2[type2=="original"] <- NA} else
warning("Splines and/or polynomials replaced by a fitted linear combination")
}
}
groups <- if (!missing(groups)) {
termsToMf(model, as.formula(paste("~",deparse(substitute(groups)))))$mf.vars[, 2, drop=FALSE]
} else {
if(is.null(mf$mf.groups)) NULL else
mf$mf.groups[, 2, drop=FALSE]
}
# If key=TRUE, determine the coordinates of the key:
oma3 <- 1.5 # room for title in the outer margin ALWAYS
mar3 <- if (is.null(groups)) 1.5 else .2 +
if(is.data.frame(groups)) length(unique(groups[, 1])) else
length(unique(groups))
nt <- sum(!is.na(type2)) + fitted
if (missing(main)) main <- if (nt == 1)
"Marginal Model Plot" else "Marginal Model Plots"
if (nt == 0) stop("No plots specified")
if (nt > 1 & (is.null(layout) || is.numeric(layout))) {
if(is.null(layout)){
layout <- switch(min(nt, 9), c(1, 1), c(1, 2), c(2, 2), c(2, 2),
c(3, 2), c(3, 2), c(3, 3), c(3, 3), c(3, 3))
}
ask <- if(missing(ask) || is.null(ask)) prod(layout)<nt else ask
}
op <- if(nt > 1) par(mfrow=layout, ask=ask, no.readonly=TRUE,
oma=c(0, 0, oma3 , 0), mar=c(5.1, 4.1, mar3, 2.1)) else
par(oma=c(0, 0, oma3 , 0), mar=c(5.1, 4.1, mar3, 2.1))
on.exit(par(op))
legend2 <- function(){
usr <- par("usr")
coords <-list(x=usr[1], y=usr[3])
leg <- legend( coords, c("Data", "Model"), lty=1:2, lwd=2, bty="n",
cex=0.9, plot=FALSE)
coords <- list(x = usr[2] - leg$rect$w, y=usr[4] + leg$rect$h)
legend( coords, c("Data", "Model"), lty=1:2, lwd=2, bty="n", xpd=NA, cex=0.9)
}
if (length(labels2) > 0) {
for (j in 1:length(labels2)) {
if(!is.na(type2[j])) {
horiz <- if(type2[j] == "original"){p1[, labels2[j]]} else {
if(type2[j] == "good") mf$mf.vars[ , labels2[j]] else NULL}
lab <- labels2[j]
mmp(model, horiz, xlab=lab, groups=groups, key=key, ...)
if(!is.null(groups)) legend2()}
}
}
if(fitted==TRUE) mmp(model, groups=groups, key=key, ...)
if(!is.null(groups)) legend2()
mtext(side=3, outer=TRUE, main, line=0.1, cex=1.2)
if(any(is.na(type2))) warning("Interactions and/or factors skipped")
invisible()
}
|