1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
# fancy scatterplot matrices (J. Fox)
# 2010-09-04: J. Fox: changed color choice
# 2010-09-16: fixed point color when col is length 1
# 2011-03-08: J. Fox: changed col argument
# 2012-04-18: J. Fox: fixed labels argument in scatterplotMatrix.formula()
# 2012-09-12: J. Fox: smoother now given as function
# 2012-09-19: J. Fox: restored smooth and span args for backwards compatibility
# 2013-02-08: S. Weisberg: bug-fix for showLabels with groups
# 2013-08-26: J. Fox: added use argument
# 2014-08-07: J. Fox: plot univariate distributions by group (except for histogram)
# 2014-08-17: J. Fox: report warning rather than error if not enough points in a group
# to compute density
# 2014-09-04: J. Fox: empty groups produce warning rather than error
# 2017-02-14: J. Fox: consolidated smooth, id, legend, and ellipse arguments
# 2017-02-17: S. Weisberg, more changes to arguments
# 2017-02-19: J. Fox: bug fixes and improvement to col argument
# 2017-04-18; S. Weisberg fixed bug in handling id=FALSE with matrix/data frame input.
# 2017-04-18; S. Weisberg changed the default for by.groups to TRUE
# 2017-04-20: S. Weisberg fixed bug with color handling
# 2017-04-20: S. Weisberg the default diagonal is now adaptiveDensity using adaptiveKernel fn
# diagonal argument is now a list similar to regLine and smooth
# changed arguments and updated man page
# 2017-05-08: S. Weisberg changed col=carPalette()
# 2017-06-22: J. Fox: eliminated extraneous code for defunct labels argument; small cleanup
# 2017-12-07: J. Fox: added fill, fill.alpha subargs to ellipse arg, suggestion of Michael Friendly.
# 2018-02-09: S. Weisberg removed the transform and family arguments from the default method
# 2018-04-02: J. Fox: warning rather than error for too few colors.
# 2018-04-12: J. Fox: clean up handling of groups arg.
# 2020-07-02: J. Fox: fix buglet in scatterplotMatrix.formula() when groups specified.
scatterplotMatrix <- function(x, ...){
UseMethod("scatterplotMatrix")
}
scatterplotMatrix.formula <- function (formula, data=NULL, subset, ...) {
na.save <- options(na.action=na.omit)
on.exit(options(na.save))
na.pass <- function(dframe) dframe
m <- match.call(expand.dots = FALSE)
if (is.matrix(eval(m$data, sys.frame(sys.parent()))))
m$data <- as.data.frame(data)
m$id <- m$formula <- m$... <- NULL
m$na.action <- na.pass
m[[1]] <- as.name("model.frame")
if (!inherits(formula, "formula") | length(formula) != 2)
stop("invalid formula")
rhs <- formula[[2]]
if ("|" != deparse(rhs[[1]])){
groups <- FALSE
}
else{
groups <- TRUE
formula <- paste(as.character(formula), collapse=" ")
formula <- as.formula(sub("\\|", "+", formula))
}
m$formula <-formula
if (missing(data)){
X <- na.omit(eval(m, parent.frame()))
# if (is.null(labels)) labels <- gsub("X", "", row.names(X))
}
else{
X <- eval(m, parent.frame())
# if (is.null(labels)) labels <- rownames(X)
}
if (!groups) scatterplotMatrix(X, ...)
else{
ncol<-ncol(X)
scatterplotMatrix.default(X[, -ncol], groups=X[, ncol], ...)
}
}
scatterplotMatrix.default <-
function(x, smooth=TRUE, id=FALSE, legend=TRUE,
regLine=TRUE, ellipse=FALSE,
var.labels=colnames(x),
diagonal=TRUE,
plot.points=TRUE,
groups=NULL, by.groups=TRUE,
use=c("complete.obs", "pairwise.complete.obs"),
col=carPalette()[-1],
pch=1:n.groups,
cex=par("cex"), cex.axis=par("cex.axis"),
cex.labels=NULL, cex.main=par("cex.main"), row1attop=TRUE, ...){
transform <- FALSE
# family <- "bcPower"
force(col)
# n.groups <- if(by.groups) length(levels(groups)) else 1
if(isFALSE(diagonal)) diagonal <- "none" else {
diagonal.args <- applyDefaults(diagonal, defaults=list(method="adaptiveDensity"), type="diag")
diagonal <- if(!isFALSE(diagonal.args)) diagonal.args$method
diagonal.args$method <- NULL
}
# regLine; use old arguments reg.line, lty and lwd
regLine.args <- applyDefaults(regLine, defaults=list(method=lm, lty=1, lwd=2,
col=col), type="regLine")
if(!isFALSE(regLine.args)) {
reg.line <- regLine.args$method
lty <- regLine.args$lty
lwd <- regLine.args$lwd
} else reg.line <- "none"
# setup smoother, now including spread
n.groups <- if(is.null(groups)) 1
else {
if (!is.factor(groups)) groups <- as.factor(groups)
length(levels(groups))
}
smoother.args <- applyDefaults(smooth, defaults=list(smoother=loessLine,
spread=(n.groups)==1, col=col, lty.smooth=2, lty.spread=4), type="smooth")
if (!isFALSE(smoother.args)) {
# check for an argument 'var' in smoother.args.
if(!is.null(smoother.args$var)) smoother.args$spread <- smoother.args$var
# end change
smoother <- smoother.args$smoother
spread <- if(is.null(smoother.args$spread)) TRUE else smoother.args$spread
smoother.args$spread <- smoother.args$smoother <- NULL
if(n.groups==1) smoother.args$col <- col[1]
}
else smoother <- "none"
# setup id
id <- applyDefaults(id, defaults=list(method="mahal", n=2, cex=1, col=col, location="lr"), type="id")
if (is.list(id) && "identify" %in% id$method) stop("interactive point identification not permitted")
if (isFALSE(id)){
id.n <- 0
id.method <- "mahal"
labels <- id.cex <- id.col <- id.location <- NULL
}
else{
labels <- if(!is.null(id$labels)) id$labels else row.names(x)
id.method <- id$method
id.n <- id$n
id.cex <- id$cex
id.col <- id$col
id.location <- id$location
}
if (is.null(labels)) labels <- as.character(seq(length.out=nrow(x)))
legend <- applyDefaults(legend, defaults=list(coords=NULL, pt.cex=cex, cex=cex), type="legend")
if (!(isFALSE(legend) || missing(groups))){
legend.plot <- TRUE
legend.pos <- legend$coords
legend.pt.cex <- legend$pt.cex
legend.cex <- legend$cex
}
else {
legend.plot <- FALSE
legend.pos <- NULL
legend.pt.cex <- cex
legend.cex <- cex.labels
}
# ellipse
ellipse <- applyDefaults(ellipse, defaults=list(levels=c(0.5, 0.95), robust=TRUE, fill=TRUE, fill.alpha=0.2), type="ellipse")
if (isFALSE(ellipse)){
levels <- NULL
robust <- NULL
}
else{
levels <- ellipse$levels
robust <- ellipse$robust
fill <- ellipse$fill
fill.alpha <- ellipse$fill.alpha
ellipse <- TRUE
}
# pre 2017 code follows
# family <- match.arg(family)
use <- match.arg(use)
na.action <- if (use == "complete.obs") na.omit else na.pass
if (!(missing(groups))){
x <- na.action(data.frame(groups, labels, x, stringsAsFactors=FALSE))
# groups <- as.factor(as.character(x[, 1]))
groups <- x$groups
# if (!is.factor(groups)) groups <- as.factor(as.character(x[,1]))
labels <- x[, 2]
x <- x[, -(1:2)]
}
else {
x <- na.action(data.frame(labels, x, stringsAsFactors=FALSE))
labels <- x[, 1]
x <- x[, -1]
id.col <- id.col[1]
}
legendPlot <- function(position="topright", pt.cex=legend.pt.cex, cex=legend.cex){
usr <- par("usr")
legend(position, bg="white",
legend=levels(groups), pch=pch, col=col[1:n.groups],
pt.cex=pt.cex, cex=cex)
}
do.legend <- legend.plot
####### diagonal panel functions
# The following panel function adapted from Richard Heiberger
panel.adaptiveDensity <- function(x, ...){
args <- applyDefaults(diagonal.args,
defaults=list(bw=bw.nrd0, adjust=1, kernel=dnorm, na.rm=TRUE))
if (n.groups > 1){
levs <- levels(groups)
for (i in 1:n.groups){
xx <- x[levs[i] == groups]
dens.x <- try(adaptiveKernel(xx, adjust = args$adjust, na.rm=args$na.rm,
bw=args$bw, kernel=args$kernel), silent=TRUE)
if (!inherits(dens.x, "try-error")){
lines(dens.x$x, min(x, na.rm=TRUE) + dens.x$y *
diff(range(x, na.rm=TRUE))/diff(range(dens.x$y, na.rm=TRUE)), col=col[i])
}
else warning("cannot estimate density for group ", levs[i], "\n",
dens.x, "\n")
rug(xx, col=col[i])
}
}
else {
dens.x <- adaptiveKernel(x, adjust = args$adjust, na.rm=args$na.rm,
bw=args$bw, kernel=args$kernel)
lines(dens.x$x, min(x, na.rm=TRUE) + dens.x$y * diff(range(x, na.rm=TRUE))/diff(range(dens.x$y, na.rm=TRUE)), col=col[1])
rug(x)
}
if (do.legend) legendPlot(position=if (is.null(legend.pos)) "topright" else legend.pos)
do.legend <<- FALSE
}
#
panel.density <- function(x, ...){
args <- applyDefaults(diagonal.args,
defaults=list(bw="nrd0", adjust=1, kernel="gaussian", na.rm=TRUE))
if (n.groups > 1){
levs <- levels(groups)
for (i in 1:n.groups){
xx <- x[levs[i] == groups]
dens.x <- try(density(xx, adjust = args$adjust, na.rm=args$na.rm,
bw=args$bw, kernel=args$kernel), silent=TRUE)
if (!inherits(dens.x, "try-error")){
lines(dens.x$x, min(x, na.rm=TRUE) + dens.x$y *
diff(range(x, na.rm=TRUE))/diff(range(dens.x$y, na.rm=TRUE)), col=col[i])
}
else warning("cannot estimate density for group ", levs[i], "\n",
dens.x, "\n")
rug(xx, col=col[i])
}
}
else {
dens.x <- density(x, adjust = args$adjust, na.rm=args$na.rm,
bw=args$bw, kernel=args$kernel)
lines(dens.x$x, min(x, na.rm=TRUE) + dens.x$y * diff(range(x, na.rm=TRUE))/diff(range(dens.x$y, na.rm=TRUE)), col=col[1])
rug(x)
}
if (do.legend) legendPlot(position=if (is.null(legend.pos)) "topright" else legend.pos)
do.legend <<- FALSE
}
panel.histogram <- function(x, ...){
par(new=TRUE)
args <- applyDefaults(diagonal.args, defaults=list(breaks="FD"))
h.col <- col[1]
if (h.col == "black") h.col <- "gray"
hist(x, main="", axes=FALSE, breaks=args$breaks, col=h.col)
if (do.legend) legendPlot(position=if (is.null(legend.pos)) "topright" else legend.pos)
do.legend <<- FALSE
}
panel.boxplot <- function(x, ...){
b.col <- col[1:n.groups]
b.col[b.col == "black"] <- "gray"
par(new=TRUE)
if (n.groups == 1) boxplot(x, axes=FALSE, main="", col=col[1])
else boxplot(x ~ groups, axes=FALSE, main="", col=b.col)
if (do.legend) legendPlot(position=if (is.null(legend.pos)) "topright" else legend.pos)
do.legend <<- FALSE
}
# The following panel function adapted from Richard Heiberger
panel.oned <- function(x, ...) {
range <- range(x, na.rm=TRUE)
delta <- diff(range)/50
y <- mean(range)
if (n.groups == 1) segments(x - delta, x, x + delta, x, col = col[1])
else {
segments(x - delta, x, x + delta, x, col = col[as.numeric(groups)])
}
if (do.legend) legendPlot(position=if (is.null(legend.pos)) "bottomright" else legend.pos)
do.legend <<- FALSE
}
panel.qqplot <- function(x, ...){
par(new=TRUE)
if (n.groups == 1) qqnorm(x, axes=FALSE, xlab="", ylab="", main="", col=col[1])
else qqnorm(x, axes=FALSE, xlab="", ylab="", main="", col=col[as.numeric(groups)])
qqline(x, col=col[1])
if (do.legend) legendPlot(position=if (is.null(legend.pos)) "bottomright" else legend.pos)
do.legend <<- FALSE
}
panel.blank <- function(x, ...){
if (do.legend) legendPlot(if (is.null(legend.pos)) "topright" else legend.pos)
do.legend <<- FALSE
}
which.fn <- match(diagonal,
c("adaptiveDensity", "density", "boxplot", "histogram", "oned", "qqplot", "none"))
if(is.na(which.fn)) stop("incorrect name for the diagonal argument, see ?scatterplotMatrix")
diag <- list(panel.adaptiveDensity, panel.density, panel.boxplot, panel.histogram, panel.oned,
panel.qqplot, panel.blank)[[which.fn]]
groups <- as.factor(if(missing(groups)) rep(1, length(x[, 1])) else groups)
counts <- table(groups)
if (any(counts == 0)){
levels <- levels(groups)
warning("the following groups are empty: ", paste(levels[counts == 0], collapse=", "))
groups <- factor(groups, levels=levels[counts > 0])
}
# n.groups <- length(levels(groups))
if (n.groups > length(col)) {
warning("number of groups exceeds number of available colors\n colors are recycled")
col <- rep(col, n.groups)
}
if (length(col) == 1) col <- rep(col, 3)
labs <- labels
pairs(x, labels=var.labels,
cex.axis=cex.axis, cex.main=cex.main, cex.labels=cex.labels, cex=cex,
diag.panel=diag, row1attop = row1attop,
panel=function(x, y, ...){
for (i in 1:n.groups){
subs <- groups == levels(groups)[i]
if (plot.points) points(x[subs], y[subs], pch=pch[i], col=col[if (n.groups == 1) 1 else i], cex=cex)
if (by.groups){
if (is.function(smoother)) smoother(x[subs], y[subs], col=smoother.args$col[i],
log.x=FALSE, log.y=FALSE, spread=spread, smoother.args=smoother.args)
if (is.function(reg.line)) regLine(reg.line(y[subs] ~ x[subs]), lty=lty, lwd=lwd, col=regLine.args$col[i])
if (ellipse) dataEllipse(x[subs], y[subs], plot.points=FALSE,
levels=levels, col=col[i], robust=robust, lwd=1,
fill=fill, fill.alpha=fill.alpha)
showLabels(x[subs], y[subs], labs[subs], method=id.method,
n=id.n, col=col[i], cex=id.cex, location=id.location,
all=list(labels=labs, subs=subs))
}
}
if (!by.groups){
if (is.function(reg.line)) abline(reg.line(y ~ x), lty=lty, lwd=lwd, col=regLine.args$col[1])
if (is.function(smoother)) smoother(x, y, col=col[1],
log.x=FALSE, log.y=FALSE, spread=spread, smoother.args=smoother.args)
if (ellipse) dataEllipse(x, y, plot.points=FALSE, levels=levels, col=smoother.args$col,
robust=robust, lwd=1, fill=fill, fill.alpha=fill.alpha)
showLabels(x, y, labs, method=id.method,
n=id.n, col=id.col, location=id.location, cex=id.cex)
}
}, ...
)
}
spm <- function(x, ...){
scatterplotMatrix(x, ...)
}
|