1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
# Scatterplot Smoothers (J. Fox and S. Weisberg)
# Sept 17, 2012 moved from scatterplot.R to scatterplotSmoothers.R
# June 18, 2014 Fixed bug in gamLine so the smoother.arg link="linkname" works; thanks to Hani Christoph
# 2014-08-19: Make sure that Matrix and MatrixModels packages are available to quantregLine().
# Can't substitute requireNamespace() for require() for gam and quantreg packages. John
# 2014-11-21: Added 'offset' argument with default 0: offset= sigmaHat(model) for use with
# marginal model plots. Fixed spread smooths as well
# 2015-01-27: gam() and s() now imported from mgcv rqss(), qss(), and fitted.rqss() from quantreg. John
# 2016-11-19: Added argument in smoother.args called 'evaluation'. The smoother will be evaluated
# at evaluation equally spaced points in the range of the horizontal axis, with a default of 50.
# 2017-02-16: explicitly copy mgcv::gam() and mgcv::s(), quantreg::qss() and quantreg::rqss(). John
# 2017-04-17: fixed passing of arguments and use of default.arg. Changed default lwd and lty's
# and names of args see scatterplot.Rd details
# 2017-05-15: fixed spread=TRUE when log="xy". in quantregLine, changed IQR(x) to IQR(x, na.rm=TRUE)
# 2017-06-29: Added defaults for col, log.x, and log.y arguments, and an empty smoother.args.
# 2017-06-30: Changed default line widths and types for smoothers to make them more visible.
# 2017-10-27: Change default lty.smooth to 1 as advertized in docs.
# 2017-11-30: substitute carPalette() for palette(). J. Fox
# 2018-06-25: The argument 'spread' has an alias 'var', with 'var' having precedence. S. Weisberg
# Similarly, col.var, lty.var, lwd.var override col.spread, lty.spread, lwd.spread
# 2018-08-23: gamLine tried to graph in linear predictor scale, not the response scale for glms.
# 2020-09-23: fixed quantregLine() to work with development version 5.69 of the quantreg package. John
# 2020-10-20: added style, alpha, border, and vertical smoother.args and shaded envelope. John
default.arg <- function(args.list, arg, default){
if (is.null(args.list[[arg]])) default else args.list[[arg]]
}
loessLine <- function(x, y, col=carPalette()[1], log.x=FALSE, log.y=FALSE,
var=FALSE, spread=var, smoother.args=NULL,
draw=TRUE, offset=0) {
lty.smooth <- default.arg(smoother.args, "lty.smooth", 1)
lwd.smooth <- default.arg(smoother.args, "lwd.smooth", 2)
col.smooth <- default.arg(smoother.args, "col.smooth", col)
lty.spread <- default.arg(smoother.args, "lty.spread", 4)
lwd.spread <- default.arg(smoother.args, "lwd.spread", 2)
col.spread <- default.arg(smoother.args, "col.spread", col)
# arg '*.spread' and '*.var' are aliased. Use the latter if present
lty.spread <- default.arg(smoother.args, "lty.var", lty.spread)
lwd.spread <- default.arg(smoother.args, "lwd.var", lwd.spread)
col.spread <- default.arg(smoother.args, "col.var", col.spread)
span <- default.arg(smoother.args, "span", 2/3)
family <- default.arg(smoother.args, "family", "symmetric")
degree <- default.arg(smoother.args, "degree", 1)
iterations <- default.arg(smoother.args, "iterations", 4)
evaluation <- default.arg(smoother.args, "evaluation", 50)
style <- match.arg(default.arg(smoother.args, "style", "filled"),
c("filled", "lines", "none"))
if (style == "none") spread <- FALSE
alpha <- default.arg(smoother.args, "alpha", 0.15)
border <- default.arg(smoother.args, "border", TRUE)
vertical <- default.arg(smoother.args, "vertical", TRUE)
if (log.x){ x <- log(x) }
if (log.y){ y <- log(y) }
valid <- complete.cases(x, y)
x <- x[valid]
y <- y[valid]
ord <- order(x)
x <- x[ord]
y <- y[ord]
x.eval <- seq(min(x), max(x), length=evaluation)
warn <- options(warn=-1)
on.exit(options(warn))
# mean smooth
fit <- try(loess(y ~ x, span=span, family=family, degree=degree,
control=loess.control(iterations=iterations)), silent=TRUE)
if (class(fit)[1] != "try-error"){
y.eval <- predict(fit, newdata=data.frame(x=x.eval))
if(draw) {
lines(if(log.x) exp(x.eval) else x.eval,
if(log.y) exp(y.eval) else y.eval,
lwd=lwd.smooth, col=col.smooth, lty=lty.smooth)
}
out <- list(x=if(log.x) exp(x.eval) else x.eval,
y=if(log.y) exp(y.eval) else y.eval)
}
else{ options(warn)
warning("could not fit smooth")
return()}
# spread smooth, if requested
if(spread) {
res <- residuals(fit)
pos <- res > 0
pos.fit <- try(loess(I(res^2) ~ x, span=span, degree=0, family=family, subset=pos,
control=loess.control(iterations=1)),
silent=TRUE)
neg.fit <- try(loess(I(res^2) ~ x, span=span, degree=0, family=family, subset=!pos,
control=loess.control(iterations=1)),
silent=TRUE)
if(class(pos.fit)[1] != "try-error"){
y.pos <- y.eval + sqrt(offset^2 + predict(pos.fit, newdata=data.frame(x=x.eval)))
y.pos <- if (log.y) exp(y.pos) else y.pos
if(draw && style == "lines") {
lines(if(log.x) exp(x.eval) else x.eval, y.pos,
lwd=lwd.spread, lty=lty.spread, col=col.spread)
} else {
out$x.pos <- if(log.x) exp(x.eval) else x.eval
out$y.pos <- y.pos
}
}
else{
options(warn)
warning("could not fit positive part of the spread")
}
if(class(neg.fit)[1] != "try-error"){
y.neg <- y.eval - sqrt(offset^2 + predict(neg.fit, newdata=data.frame(x=x.eval)))
y.neg <- if (log.y) exp(y.neg) else y.neg
if(draw && style == "lines") {
lines(if(log.x) exp(x.eval) else x.eval, y.neg,
lwd=lwd.spread, lty=lty.spread, col=col.spread)
} else {
out$x.neg <- if(log.x) exp(x.eval) else x.eval
out$y.neg <- y.neg
}
} else {
options(warn)
warning("could not fit negative part of the spread")
}
if (draw && style == "filled"){
if (vertical){
with(out, {
good <- complete.cases(x.neg, x.pos, y.neg, y.pos)
envelope(x.neg[good], x.pos[good], y.neg[good], y.pos[good],
col=col.spread, alpha=alpha, border=border)
})
} else {
with(out, {
good.neg <- !is.na(y.neg)
good.pos <- !is.na(y.pos)
envelope(x.neg[good.neg], x.pos[good.pos], y.neg[good.neg], y.pos[good.pos],
col=col.spread, alpha=alpha, border=border)
})
}
}
}
if(!draw) return(out)
}
gamLine <- function(x, y, col=carPalette()[1], log.x=FALSE, log.y=FALSE,
var=FALSE, spread=var, smoother.args=NULL, draw=TRUE, offset=0) {
gam <- mgcv::gam
s <- mgcv::s
lty.smooth <- default.arg(smoother.args, "lty.smooth", 1)
lwd.smooth <- default.arg(smoother.args, "lwd.smooth", 2)
col.smooth <- default.arg(smoother.args, "col.smooth", col)
lty.spread <- default.arg(smoother.args, "lty.spread", 4)
lwd.spread <- default.arg(smoother.args, "lwd.spread", 2)
col.spread <- default.arg(smoother.args, "col.spread", col)
# arg '*.spread' and '*.var' are aliased. Use the latter if present
lty.spread <- default.arg(smoother.args, "lty.var", lty.spread)
lwd.spread <- default.arg(smoother.args, "lwd.var", lwd.spread)
col.spread <- default.arg(smoother.args, "col.var", col.spread)
fam <- default.arg(smoother.args, "family", gaussian)
link <- default.arg(smoother.args, "link", NULL)
evaluation <- default.arg(smoother.args, "evaluation", 50)
style <- match.arg(default.arg(smoother.args, "style", "filled"),
c("filled", "lines", "none"))
if (style == "none") spread <- FALSE
alpha <- default.arg(smoother.args, "alpha", 0.15)
border <- default.arg(smoother.args, "border", TRUE)
vertical <- default.arg(smoother.args, "vertical", TRUE)
fam <- if(is.character(fam)) eval(parse(text=fam)) else fam
link <- if(is.character(link)) make.link(link) else link
k <- default.arg(smoother.args, "k", -1)
bs <- default.arg(smoother.args, "bs", "tp")
if (is.character(family)) family <- eval(parse(text=family))
weights <- default.arg(smoother.args, "weights", NULL)
spread <- spread && identical(fam, gaussian) && is.null(link)
if (log.x) x <- log(x)
if (log.y) y <- log(y)
valid <- complete.cases(x, y)
x <- x[valid]
y <- y[valid]
ord <- order(x)
x <- x[ord]
y <- y[ord]
x.eval <- seq(min(x), max(x), length=evaluation)
w <-if (is.null(weights)) rep(1, length(y))
else weights[valid][ord]
warn <- options(warn=-1)
on.exit(options(warn))
fam1 <- if(is.null(link)) fam else fam(link)
fit <- try(gam(y ~ s(x, k=k, bs=bs), weights=w, family=fam1))
if (class(fit)[1] != "try-error"){
y.eval <- predict(fit, newdata=data.frame(x=x.eval), type="response")
if(draw)lines(if(log.x) exp(x.eval) else x.eval,
if(log.y) exp(y.eval) else y.eval,
lwd=lwd.smooth, col=col.smooth, lty=lty.smooth)
out <- list(x=if(log.x) exp(x.eval) else x.eval,
y=if(log.y) exp(y.eval) else y.eval)
}
else{ options(warn)
warning("could not fit smooth")
return()}
if(spread) {
res <- residuals(fit)
pos <- res > 0
pos.fit <- try(gam(I(res^2) ~ s(x, k=k, bs=bs), subset=pos), silent=TRUE)
neg.fit <- try(gam(I(res^2) ~ s(x, k=k, bs=bs), subset=!pos), silent=TRUE)
if(class(pos.fit)[1] != "try-error"){
y.pos <- y.eval + sqrt(offset^2 +
predict(pos.fit, newdata=data.frame(x=x.eval), type="response"))
if(draw && style == "lines") {
lines(if(log.x) exp(x.eval) else x.eval,
if(log.y) exp(y.pos) else y.pos,
lwd=lwd.spread, lty=lty.spread, col=col.spread)
} else {
out$x.pos <- if(log.x) exp(x.eval) else x.eval
out$y.pos <- if(log.y) exp(y.pos) else y.pos
}
}
else{ options(warn)
warning("could not fit positive part of the spread")
}
if(class(neg.fit)[1] != "try-error"){
y.neg <- y.eval - sqrt(offset^2 +
predict(neg.fit, newdata=data.frame(x=x.eval), type="response"))
if(draw && style == "lines") {
lines(if(log.x) exp(x.eval) else x.eval,
if(log.y) exp(y.neg) else y.neg,
lwd=lwd.spread, lty=lty.spread, col=col.spread)
} else {
out$x.neg <- if(log.x) exp(x.eval) else x.eval
out$y.neg <- if(log.y) exp(y.neg) else y.neg
}
} else {
options(warn)
warning("could not fit negative part of the spread")
}
if (draw && style == "filled"){
if (vertical){
with(out, {
good <- complete.cases(x.neg, x.pos, y.neg, y.pos)
envelope(x.neg[good], x.pos[good], y.neg[good], y.pos[good],
col=col.spread, alpha=alpha, border=border)
})
} else {
with(out, {
good.neg <- !is.na(y.neg)
good.pos <- !is.na(y.pos)
envelope(x.neg[good.neg], x.pos[good.pos], y.neg[good.neg], y.pos[good.pos],
col=col.spread, alpha=alpha, border=border)
})
}
}
}
if(!draw) return(out)
}
quantregLine <- function(x, y, col=carPalette()[1], log.x=FALSE, log.y=FALSE,
var=FALSE, spread=var, smoother.args=NULL, draw=TRUE, offset=0) {
if (!package.installed("Matrix")) stop("the Matrix package is missing")
if (!package.installed("MatrixModels")) stop("the MatrixModels package is missing")
if (!package.installed("SparseM")) stop("the SparseM package is missing")
qss <- quantreg::qss
rqss <- quantreg::rqss
lty.smooth <- default.arg(smoother.args, "lty.smooth", 1)
lwd.smooth <- default.arg(smoother.args, "lwd.smooth", 2)
col.smooth <- default.arg(smoother.args, "col.smooth", col)
lty.spread <- default.arg(smoother.args, "lty.spread", 4)
lwd.spread <- default.arg(smoother.args, "lwd.spread", 2)
col.spread <- default.arg(smoother.args, "col.spread", col)
# arg '*.spread' and '*.var' are aliased. Use the latter if present
lty.spread <- default.arg(smoother.args, "lty.var", lty.spread)
lwd.spread <- default.arg(smoother.args, "lwd.var", lwd.spread)
col.spread <- default.arg(smoother.args, "col.var", col.spread)
style <- match.arg(default.arg(smoother.args, "style", "filled"),
c("filled", "lines", "none"))
if (style == "none") spread <- FALSE
alpha <- default.arg(smoother.args, "alpha", 0.15)
border <- default.arg(smoother.args, "border", TRUE)
vertical <- default.arg(smoother.args, "vertical", TRUE)
evaluation <- default.arg(smoother.args, "evaluation", 50)
if (log.x) x <- log(x)
if (log.y) y <- log(y)
lambda <- default.arg(smoother.args, "lambda", IQR(x, na.rm=TRUE))
valid <- complete.cases(x, y)
x <- x[valid]
y <- y[valid]
ord <- order(x)
x <- x[ord]
y <- y[ord]
x.eval <- seq(min(x), max(x), length=evaluation)
Data <- data.frame(x, y)
if (!spread){
fit <- rqss(y ~ qss(x, lambda=lambda), data=Data)
y.eval <- predict(fit, newdata=data.frame(x=x.eval))
y.eval <- if(log.y) exp(y.eval) else y.eval
if(draw)lines(if(log.x) exp(x.eval) else x.eval, y.eval, lwd=lwd.smooth,
col=col, lty=lty.smooth) else
out <- list(x=if(log.x) exp(x.eval) else x.eval, y=y.eval)
}
else{
fit <- rqss(y ~ qss(x, lambda=lambda), data=Data)
q1fit <- rqss(y ~ qss(x, lambda=lambda), tau=0.25, data=Data)
q3fit <- rqss(y ~ qss(x, lambda=lambda), tau=0.75, data=Data)
y.eval <- predict(fit, newdata=data.frame(x=x.eval))
y.eval.q1 <- predict(q1fit, newdata=data.frame(x=x.eval))
y.eval.q3 <- predict(q3fit, newdata=data.frame(x=x.eval))
y.eval <- if(log.y) exp(y.eval) else y.eval
y.eval.q1 <- if(log.y) exp(y.eval.q1) else y.eval.q1
y.eval.q3 <- if(log.y) exp(y.eval.q3) else y.eval.q3
# adjust for offset
y.eval.q1 <- y.eval - sqrt( (y.eval-y.eval.q1)^2 + offset^2)
y.eval.q3 <- y.eval + sqrt( (y.eval-y.eval.q3)^2 + offset^2)
if (draw) {
lines(if(log.x) exp(x.eval) else x.eval, y.eval,
lwd=lwd.smooth, col=col.smooth, lty=lty.smooth)
}
if(draw && style == "lines") {
lines(if(log.x) exp(x.eval) else x.eval, y.eval.q1,
lwd=lwd.spread, lty=lty.spread, col=col.spread)
lines(if(log.x) exp(x.eval) else x.eval, y.eval.q3,
lwd=lwd.spread, lty=lty.spread, col=col.spread)
} else {
x.eval <- if(log.x) exp(x.eval) else x.eval
out <- list(x=x.eval, y=y.eval)
out$x.neg <- x.eval
out$y.neg <- y.eval.q1
out$x.pos <- x.eval
out$y.pos <- y.eval.q3
}
if (draw && style == "filled"){
if (vertical){
with(out, {
good <- complete.cases(x.neg, x.pos, y.neg, y.pos)
envelope(x.neg[good], x.pos[good], y.neg[good], y.pos[good],
col=col.spread, alpha=alpha, border=border)
})
} else {
with(out, {
good.neg <- !is.na(y.neg)
good.pos <- !is.na(y.pos)
envelope(x.neg[good.neg], x.pos[good.pos], y.neg[good.neg], y.pos[good.pos],
col=col.spread, alpha=alpha, border=border)
})
}
}
}
if(!draw) return(out)
}
|